Нарисовать строение клетки растительной: Cтроение растительной клетки — рисунок с подписями

Содержание

Урок 2: Клеточное строение растений

План урока:

Какие бывают клетки у растений?

Кто первым увидел клетку? Увеличительные приборы

Какие бывают увеличительные приборы?

Как устроена клетка растений?

 

Растения – клеточные организмы

Когда мы сравнивали растения с другими царствами живой природы, то выяснили, что они тоже состоят из клеток. Чтобы понимать, как живёт растение, важно познакомиться со строением этой его составной части. Наука о клетках называется цитологией. Сегодня мы тоже станем настоящими цитологами.

 

Какие бывают клетки у растений?

Мельчайшие растения – одноклеточные водоросли состоят из одной клетки. Их форма может быть очень разной – амёбоидной, веретёновидной, овальной, шарообразной, звездчатой. Она в виде гирьки, кустика с веером, диска, треугольников, бус – у одиночных и колониальных диатомовых водорослей, которые сверху прикрыты панцирем из диоксида кремния.


Диатомовые водоросли Источник 

Большинство многоклеточных зелёных, бурых или красных водорослей, построены из одинаковых клеток, а самые крупные растения состоят из миллиардов таких ячеек, каждая из которых выполняет свою функцию и поэтому отличается друг от друга. Сравнение клеток растений можно провести, наблюдая их самостоятельно. Сложно представить, сколько их находится в одном дереве, если только его лист содержит примерно 20 000 000 штук.

А теперь сложное научное определение: клетка – это система, а это значит, что она состоит из более мелких, но взаимосвязанных частей. Этими частями являются её детали, построенные из биополимеров – нуклеиновых кислот и белков, которые совместно поддерживают энергетические и метаболические процессы всего организма в целом.

 

Кто первым увидел клетку? Увеличительные приборы

Большинство клеток нельзя увидеть невооружённым глазом. Только после изобретения увеличительных приборов люди узнали, что всё живое сделано из них, а клетка появляется из другой (материнской) клетки.

  • Оптический (световой) микроскоп изобрели в 16 веке. По одной версии в 1591 году его придумали отец и сын Янсены. По другой – немого раньше в 1538 г. итальянский врач Франкастро впервые скомбинировал две линзы так, что получилось небольшое увеличение.
  • Галилео Галилей в 1609 г собрал прибор с вогнутой и выпуклой линзой.
  • Английский учёный Роберт Гук в 1665 году приспособил ранее изобретённый окуляр к микроскопу и получил 30-кратное увеличение, он описал строение некоторых растительных тканей, в частности пробки коры дуба. Эта ткань состояла из маленьких ячеек, разделённых перегородками. Это были мёртвые клетки, но Роберт Гук их увидел первым и дал им название «клетки». Но слово в современном его значении стали употреблять только 150 лет спустя.


Микроскоп Роберта Гука Источник 

А А. Левенгук в 1675 г обнаружил протисты, используя микроскоп с одной хорошо отшлифованной линзой, увеличивающей объект в 100 и 300 раз.

  • В 1838 г. немецкий ботаник Матиас Шлейден пришёл к выводу, что все растительные ткани имеют клеточное строение.


Разнообразие растительных клеток. Источник

 

Какие бывают увеличительные приборы?

О свойствах отполированного двояковыпуклого стекла знали ещё в Древней Греции. Поместив его в оправу, люди получили первый увеличительный прибор – лупу. Она даёт увеличение в 2-30 раз. Но большинство клеток можно увидеть только при большем разрешении. Они очень малы и при описании их величины применяют микрометры и нанометры.


Единицы измерения, используемые в микроскопии Источник 

Человеческий глаз имеет разрешение до 100 мкм. Чтобы рассмотреть более мелкие предметы, приходится применять увеличивающие приборы. Лучший световой микроскоп способен показать нам объекты размером до 0,2 мкм, т. е. 200 нм, увеличивая его в 500 раз. Сделать оптический микроскоп с большей разрешимостью технически невозможно. Увеличение школьного светового микроскопа не превышает 300 раз.

В 20 веке учёные придумали применять вместо видимого света (потока фотонов) – поток электронов. Согласно современным представлениям, фотон является частицей с волновыми свойствами, самая длинная волна у красного света, самая короткая – у фиолетового. Электронный микроскоп разрешает увеличить предметы больше, чем оптический, в 400 раз, так как размер электрона значительно меньше размера фотона. Классический радиус электрона составляет примерно три миллионных нанометра, а наименьшая длина волны видимого света равна 380 нанометров. Поток фотонов огибает мелкие частицы, размеры которых сравнимы с длиной световой волны, а электроны отражаются от них. Чтобы увидеть изображение, которое дает электронный микроскоп, его надо вывести на специальный экран. В современный электронный микроскоп можно увидеть частички размером в 0,5 нм. Под ним рассматривают вирусы, мелкие части клетки. Существуют просвечивающие и сканирующие электронные микроскопы. Последний имеет больше преимуществ, им чаще пользуются микробиологи.


Сканирующий электронный микроскоп Источник

 

Как устроена клетка растений?

Размеры клетки растений колеблются от 10 до 100 мкм. Значит, их можно увидеть в световой микроскоп. Есть и гигантские клетки. Например, хорошо видны невооружённым глазом волокна апельсина, а это всего одна клетка. Семена хлопчатника имеют волоски, состоящие из одной клетки, их длина равна 5 см. У китайской крапивы волокна ещё длиннее – до 55 см. Но их ширина намного меньше, всего от 50 до 100 мкм.

По форме у многоклеточных организмов, в том числе и у растений, бывают паренхимные (примерно одинаковые при измерении во всех направлениях) и прозенхимные (вытянутые) клетки. У всех клеток есть 2 компонента: плазмалемма (цитоплазматическая мембрана) и протопласт (живая часть). Клетки делятся на доядерные (прокариотические) и ядерные (эукариотические). Мы говорим про клетку растений, она эукариотическая (с ядром). Протопласт ядерных клеток делят на цитоплазму и ядро.

Цитоплазму подразделяют на цитоплазматический матрекс, называемый гиалоплазмой (цитозолем) и органоиды (органеллы), как органы у человека, выполняющие каждый свою работу (функцию).

Органеллы бывают немембранные, одномембранные и двумембранные.


Строение клетки растения Источник 

В живой клетке растений цитоплазма постоянно движется. Этот процесс называется током цитоплазмы (циклозом). Течение перемещает все органоиды клетки, капли и кристаллы гиалоплазмы.

В процессе жизни протопласт выделяет разнообразные нужные клетке растений вещества. Они либо сохраняются внутри – в гиалоплазме, в вакуоли, либо становятся частью клеточной стенки. Простейшие из этих веществ: липиды, углеводы и белки. Среди углеводов известными являются крахмал, глюкоза и сахароза. Секретируемый протопластом воск – это липид, его растения вырабатывают для создания защитного слоя – кутикулы, препятствующего потере влаги в пустынях. А у хищного непентиса воск служит веществом-ловушкой, в котором попавшие внутрь растения животные застревают, не имея возможности спастись.


Хищное растение непентис (лат. Nepenthes). Источник 

Вторичные метаболиты протопласта, или группа защитных веществ: танины, алкалоиды и др. , выполняют разные задачи, главной из которых является защита от съедания растений животными, проникновения болезнетворных микробов. Например, стрекательные клетки крапивы производят муравьиную кислоту, которая впрыскивается в кожу прикоснувшегося к растению человека или животного, вызывая у них жгучую боль.

Стрекательными называют клетки, которые при раздражении впрыскивают в тело жертвы какие либо вещества: парализующие или раздражающие. У гидры они содержат нечто походе на гарпун или жёсткую нить, у крапивы это просто «ампулы» с жидкостью, отламывающиеся при прикосновении.


Стрекательная клетка крапивы Источник 

Теперь рассмотрим особенности строения растительной клетки более подробно. Сходство клеток растений выражается в наличии этих частей.

  • Клеточная стенка – это прочная углеводная оболочка, расположенная снаружи, за пределами плазмолеммы, она непосредственно контактирует с окружающей средой и другими клетками. У растений она состоит в основном из клетчатки (целлюлозы), образуемой протопластом, проходящей через мембрану и откладывающейся снаружи. Клеточная стенка растений прочная, но растяжимая. Всё благодаря её строению. Пока она контактирует с живой частью клетки, она растёт. Она придаёт клетке форму и сопротивляется давлению растущей вакуоли, делает её прочной, участвует в проведении полезных и задерживании вредных веществ. Через поры (отверстия) в клеточной стенке проходят цитоплазматические тяжи (плазмодесмы) при помощи которых клетка сообщается с другими клетками.
  • Цитоплазматическая мембрана (плазмалемма) – тонкая (4-10 нм) эластичная плёнка, расположенная под клеточной стенкой, покрывающая внутреннюю часть клетки и контактирующая с цитоплазмой. Её толщину можно сравнить со скорлупой яйца по сравнению с белком и желтком в нём. Выполняет транспортную, барьерную и рецепторную функции. Главная её работа – пропускать нужные вещества в клетку, задерживать вредные и лишние снаружи. Но она трудится сразу на нескольких работах – в ней строятся внеклеточные структуры и через неё проходит транспортные каналы из клетки.
  • Гиалоплазма (цитозоль) – это полужидкая (гелеобразная) часть протопласта, основная функция которой – обеспечение обмена веществ клетки. Она объединяет все её части и помогает им взаимодействовать. На 90-95% цитозоль состоит из воды. Остальная часть – несмешивающиеся между собой органические и минеральные включения.
  • Рибосомы – самые мелкие органеллы клетки, увидеть которые можно только под электронным микроскопом, в них происходит сборка белков. Они лежат на цитоплазматической сети (сложный органоид, который изучают в старших классах) или внутри гиалоплазмы.
  • Цитоскелет – система трубочек, проходящих сквозь всю клетку. Они поддерживают её форму и служат местом транспорта веществ.
  • Ядро и хромосомы. В них хранится наследственная информация. Ядро как мозг животного руководит всеми процессами в клетке растений и не только. Мало влияет оно только на митохондрии и пластиды. Ядра бывают круглой или овальной формы, их размер колеблется от 2 до 500 мкм.
    При правильном окрашивании клетки они видны под световым микроскопом. В молодых клетках ядро расположено в центре, в старых оно отталкивается вакуолью к плазмалемме.
  • Пластиды, но по большей мере их разновидность хлоропласты – органеллы, функцией которых является превращение тепловой солнечной энергии в энергию химических связей АТФ и производство органических веществ в процессе фотосинтеза. Пластиды имеют клетки растений, некоторых бактерий и протист. Они образуются из пропластид (крошечных бесцветных телец), появляющихся в делящихся клетках побегов и корней. Без солнечного света они так и остаются бесцветными и называются этиопластами. На свету пропластиды становятся хлоропластами – пластидами, в которых преобладает хлорофилл (зелёный пигмент). Есть и другие виды пластид – лейкопласты (бесцветные) и хромопласты (оранжевые, красные или жёлтые). Все эти типы пластид могут «превращаться» друг в друга при изменении концентрации красителя (пигмента). Это крупные органеллы, у высших растений они равны 4-10 мкм, поэтому в оптический микроскоп их легко можно увидеть.
    У высших растений хлоропласты по форме напоминают линзу, лейкопласты и хромопласты бывают разными. У водорослей они разнообразные по форме, очень большие и называются по-другому – хроматофорами.


Форма хроматофор водорослей. Источник 

  • Вакуолярная система – это цитоплазматическая сеть, вакуоли и аппарат Гольджи. Вместе они обеспечивают синтез, хранение и транспорт клеточных мембран и белков. Сейчас нам важно рассмотреть только одну часть этой системы – центральную вакуоль, остальные органеллы вы будете учить в старших классах. У растений вакуоль в клетке играет очень важную роль. Это одномембранный пузырёк, заполненный клеточным соком. В молодой клетке существует много мелких вакуолей. С возрастом они наполняются веществами и сливаются вместе, образуя крупный пузырёк. Функции вакуоли: участие в солевом и водном обмене клетки, запасание питательных веществ и обеспечение объёма клетки при помощи тургорного давления. Крупные вакуоли арбуза, яблока, томата легко можно рассмотреть под световым микроскопом.


Вакуоли в клетках яблока и картофеля. Источник 

  • Митохондрии – есть во всех ядерных (эукариотических) клетках. В них производится АТФ, но совсем другим путём, нежели в пластидах. Они мелкие, не более 1 мкм, эллиптические или округлые. Это полусамостоятельные органеллы клетки, ранее бывшие клетками бактерий, которые каким-то способом оказались внутри другой более крупной клетки и стали её частью. Но они по прежнему появляются только путём деления материнского органоида, а если организму при половом размножении не досталась ни одна митохондрия, то она и не появится в ней никак. В них есть своя ДНК, рибосомы и синтезируются свои белки.
  • Органоиды движения – образования, напоминающие волоски – реснички, жгутики, ундулиподии, служащие для передвижения клеток. При помощи жгутика двигается одноклеточная водоросль хламидомонада, мужские половые клетки мхов и папоротников. Ундулиподии – органоиды движения многих водорослей, чаще на одноклеточной стадии их жизненного цикла. У высших растений ими снабжены мужские половые клетки.


Отличие клеток растений от клеток других живых организмов Источник 

В школе для того, чтобы понять, как устроены клетки, чаще всего рассматривают под микроскопом плёнку луковицы. Окрасив эту тонкую ткань, ты сможешь увидеть в клетке в световой микроскоп лейкопласты, ядро, цитоплазму и оболочку. Изучи инструкцию и сделай лабораторную работу самостоятельно. Не забудь сначала прочитать правила обращения с микроскопом.


Как рассмотреть клетки лука под микроскопом. Источник 

 

Клеточное строение растительного организма : Мир растений (Растения) : Виртуальная школа БАКАЙ

Рассмотрим строение растительной клетки под микроскопом.
Видны продолговатые клетки, плотно прилегающие одна к другой. Каждая клетка имеет плотную прозрачную оболочку, в которой местами есть более тонкие участки — поры. Под оболочкой находится живое бесцветное вязкое вещество — цитоплазма. Цитоплазма медленно движется. Движение цитоплазмы способствует перемещению в клетках питательных веществ и воздуха. При сильном нагревании и замораживании цитоплазма разрушается, и тогда клетка погибает. В цитоплазме находится небольшое плотное тельце — ядро, в котором можно различить ядрышко. С помощью электронного микроскопа было установлено, что ядро имеет очень сложное строение.
Почти во всех клетках, особенно в старых, хорошо заметны полости — вакуоли (от латинского слова «вакуус» — пустой). Они заполнены клеточным соком. Клеточный сок — это вода с растворенными в ней сахарами и другими органическими и неорганическими веществами.
В цитоплазме растительной клетки находятся многочисленные мелкие тельца — пластиды. При большом увеличении пластиды хорошо видны. В клетках разных органов растений число их различно. От цвета пластид и от красящих веществ, содержащихся в клеточном соке, зависит окраска тех или иных частей растений. Зеленые пластиды называют хлоропластами.
Все органы растений состоят из клеток. Следовательно, растение имеет клеточное строение, и каждая клетка — это микроскопическая составляющая часть растения. Клетки прилегают одна к другой и соединены особым межклеточным веществом, которое находится между оболочками соседних клеток. Если все межклеточное вещество разрушается, клетки разъединяются.
Нередко живые растущие клетки всех органов растения несколько округляются. При этом их оболочки местами отходят друг от друга; в этих участках межклеточное вещество разрушается. Возникают межклетники, заполненные воздухом. Сеть межклетников соединяется с воздухом, окружающим растение, через особые межклетники, расположенные на поверхности органов.

Каждая живая клетка дышит, питается и в течение определенного времени растет. Вещества, необходимые для питания, дыхания и роста клетки, поступают в нее из других клеток и из межклетников, а все растение получает их из воздуха и почвы. Сквозь клеточную оболочку проходят в виде растворов почти все вещества, необходимые для жизни клетки.


ДЕЛЕНИЕ КЛЕТКИ

Делению клетки предшествует деление ее ядра. Перед делением клетки ядро увеличивается и в нем становятся хорошо заметными тельца обычно циллиндрической формы — хромосомы (от греческих слов «хромо» — цвет, «сома» — тело). Они передают наследственные признаки от клетки к клетке. Перед деление число хромосом удваивается. Все живое содержимое клетки также равномерно распределяется между новыми клетками. Итак, деление клетки начинается с деления ядра и каждая из образовавшихся клеток содержит то же самое число хромосом, что и ядро исходной клетки.
Молодые клетки, в отличие от старых, неспособных делиться, содержат много мелких вакуолей. Ядро молодой клетки располагается в центре. В старой клетке обычно имеется одна большая вауоль, а цитоплазма, в которой находится ядро, прилегает к клеточной оболочке. Молодые, недавно возникшие клетки увеличивются и снова делятся. Так в результате деления и роста клеток растут все органы растения.


ТКАНИ КЛЕТКИ

Группу клеток, имеющих сходное строение и выполняющих одинаковые функции, называют тканью. Органы растений сложены разными тканями.
Ткань, клетки которой постоянно делятся, называют образовательной.
Покровные ткани защищают растения от неблагоприятных воздействий внешней среды.
За проведением веществ во все органы растения отвечает проводящая ткань.
В клетках запасающей ткани откладываются в запас питательные вещества.
В зеленых клетках ткани листьев и молодых стеблей происходит фотосинтез. Такие ткани называют фотосинтезирующими.
Механическая ткань придает прочность органам растения.

Тема 1. Клетка – живая система.

1. Дадим определение понятиям.

Клетка – это единица строения всего живого.
Органоид – это специализированные структуры клетки, выполняющие определённые функции.

2. Опровергнем утверждение о том, что ядро – обязательная составляющая всех клеток организмов.
Ядро является центром всех ядерных клеток. Тем не менее, существуют организмы, которые не имеют ядра – бактерии. Такие организмы называют прокариотами.

3. Заполним таблицу.

 4. Дополним предложения.
Внутренней средой клетки является цитоплазма. В ней располагаются ядро и многочисленные органоиды. Она соединяет органоиды между собой, обеспечивает перемещение различных веществ и является средой, в которой идут различные процессы. Оболочка служит внешним каркасом клетки, придаёт ей определённую форму и размеры, выполняет защитную и опорную функции, участвует в транспорте веществ в клетку.

5. Подпишем органоиды клетки, обозначенные на рисунке цифрами.

1 – хлоропласт
2 – клеточная стенка
3 – цитоплазматическая мембрана
4 – лизосома
5 – вакуоль
6 – аппарат Гольджи
7 – ЭПС
8 – ядро

6. Заполним таблицу.

 7. Обозначим органоиды в контуре животной клетки.

8. Выполним задания.
1) Обозначим органоиды цитоплазмы:
а) ядро
в) хлоропласты
г) рибосомы
д) митохондрии
е) вакуоли

2) Обозначим структуры, находящиеся в ядре:
б) ядрышко

9. Выясним роль хромосом в клетке.
Хранят наследственную информацию.

10. Вставим пропущенные буквы.
ЭндОплазмАтическая сеть, цИтоплазма, мИтОхондрия, рИбОсома, хлорОпласт, вАкуОль, хлорОфилЛ, пИноцИтоз, фаОцИтоз.

Лабораторная работа
«Строение растительной клетки»

4. Зарисуем группу растительных клеток.

5. Зарисуем одну клетку листа элодеи и подпишем ее части.

Лабораторная работа
«Строение животной клетки»

 2. Зарисуем группу клеток животной ткани.

3. Зарисуем одну клетку и подпишем ее части.

4. Обозначим отличительные и общие черты животной клетки с клеткой листа элодеи.
Сходство в том, что есть цитоплазматическая мембрана, цитоплазма и ядро.

Различия: у клетки элодеи есть хлоропласты, клеточная стенка и вакуоль, а у животной – лизосомы и митохондрии.


Сайт учителей биологии МБОУ Лицей № 2 города Воронежа

Внутреннее строение листа. Листовую пластинку со всех сторон покрывает кожица, или эпидерма (от греческих слов «эпи» — на, «дерма» — кожа). Она образована покровной тканью и состоит из одного слоя живых, плотно сомкнутых друг с другом клеток. Основная функция кожицы — защитная. Она предохраняет лист от механических повреждений, высыхания, проникновения микроорганизмов. Иногда поверхность кожицы имеет различные выросты, волоски или покрыта воском. Эти приспособления усиливают защитные функции кожицы.

Среди прозрачных и бесцветных клеток кожицы можно различить многочисленные отверстия. Они окружены зеленоватыми замыкающими клетками, их цитоплазма содержит хлоропласты. Изменяя свою форму, они могут изменять размер отверстия, регулируя газообмен и испарение воды. Эти особые клеточные образования называются устьица. Обычно они располагаются на нижней стороне листа, а у плавающих листьев — на верхней.

Под кожицей листа располагается основная ткань. Она образует мякоть листа. Основная ткань делится на столбчатую и губчатую. Столбчатая ткань образована тонкостенными удлинёнными клетками с большим количеством хлоропластов. Она располагается в верхней части листа. Клетки губчатой ткани расположены рыхло, имеют неправильную форму, хлоропластов значительно меньше, хорошо развиты межклетники. Межклетники столбчатой и губчатой тканей связаны с устьицами. По ним циркулирует воздух, сюда же выделяются продукты обмена. В межклетниках губчатой ткани, которая прилегает к нижней части листа, накапливаются пары воды. Основная функция столбчатой и губчатой тканей — фотосинтез.

Световые и теневые листья: а — лист светолюбивого растения; б — лист теневыносливого растения

 

Строение проводящих пучков (жилок). Мякоть листа пронизывают многочисленные жилки, сосудисто-волокнистые пучки. Они образованы проводящими тканями — лубом и древесиной и обеспечивают передвижение веществ по листу. По ситовидным трубкам луба из листьев к другим органам растения поступают растворы органических веществ. По сосудам древесины от корня в лист поступает вода и растворённые в ней минеральные вещества.

 

В состав жилок входят волокна механической ткани, а крупные жилки окружены ею со всех сторон. Именно они придают листу прочность и упругость.

 

 

Листья и среда обитания. Из всех органов растения листья являются самыми изменчивыми по форме, размерам, окраске, особенностям внутреннего строения. Даже на одном растении в любой момент листья, взятые с верхушки, середины и нижней части кроны, будут различаться не только формой и величиной, но и количеством хлоропластов.

 

Особенности строения листьев во многом зависят от условий среды, в которой обитают растения. Растения, обитающие во влажных, тёплых местах, имеют крупные листья с большим количеством устьиц. Им нужно избавляться от избытка воды. Растения засушливых мест должны экономить воду, уменьшая испарение, поэтому их листья маленькие или превращены в чешуйки и даже иголки. Листья других растений опушены, имеют восковой налёт, количество устьиц небольшое. Некоторые растения запасают воду в мясистых листьях.

 

Реагируют листья и на условия освещённости. Так, листья светолюбивых растений, имеющие несколько слоёв столбчатой ткани, содержат больше хлорофилла, поэтому их окраска более тёмная. Листья теневыносливых растений в которых губчатой рыхлой ткани много, содержат меньше хлорофилла, потому их окраска более светлая.

 

 

Значение листьев. Основными функциями листа являются фотосинтез, газообмен и испарение воды. Однако листья некоторых растений выполняют несвойственные типичным листьям функции, поэтому они видоизменились. Рассмотрим некоторые из них.

 

Листья капусты, алоэ, молодила запасают воду и питательные вещества.

 

Колючки (барбарис, кактус) предохраняют растения от поедания животными, уменьшают испарение воды.

 

Усики (горох, фасоль, чина) образуются из разных частей листа. Они служат для поддержания мягких стеблей растений в вертикальном положении.

 

Видоизменения листьев: а — колючки; б — листья-ловушки; в — листья-усики; г — сочные листья

 

Чешуйки (саксаул) способствуют уменьшению испарения воды. Сочные чешуйки лука запасают воду и питательные вещества. Наружные почечные чешуи выполняют защитную функцию.

 

Листья-ловушки (росянка, пузырчатка) образуются у растений, испытывающих недостаток в азоте. Их листья превратились в ловчие аппараты для охоты на мелких насекомых и ракообразных.

 

Листья многих растений являются кормом для травоядных животных и насекомых. Человек использует в пищу листья таких растений, как щавель, салат, капуста, чай. Многие растения имеют красивую листву, они украшают наши жилища, сады и парки.