Строение клетки схема человека: Строение клетки человека и ее функции в организме

Содержание

Строение клетки человека — состав, функции, свойства

Клетка — элементарная живая система, основная структурная и функциональная единица организма, способная к самообновлению, саморегуляции и самовоспроизведению.

Жизненные свойства клетки человека

К основным жизненным свойствам клетки относят: обмен веществ, биосинтез, размножение, раздражимость, выделение, питание, дыхание, рост и распад органических соединений.

Химический состав клетки

Основные химические элементы клетки: Кислород (О), Сера (S), Фосфор (Р), Углерод (С), Калий (К), Хлор (Сl), Водород (Н), Железо (Fe), Натрий (Na), Азот (N), Кальций (Са), Магний (Mg)

Неорганические веществаОрганические вещества
1. Вода — растворяет и переносит питательные вещества. Вода — универсальный растворитель. Все реакции идут в растворах. Вода обеспечивает перенос необходимых веществ и выделение вредных продуктов.
Вода участвует в регуляции температуры тела и составляет 70-85% от всего химического состава клетки.

2. Минеральные соли участвуют в образова­нии жизненно важных соединений (напри­мер, белка крови — ге­моглобина)

— Углеводы;

— Жиры;

— Белки;

— Нуклеиновые кислоты

— АТФ

Органические вещества клетки

Название веществ

Из каких эле­ментов (веществ) состоят

Функции веществ

Углеводы

Углерод, водо­род, кислород.

Основные источники энергии для осуществления всех жиз­ненных процессов.

Жиры

Углерод, водо­род, кислород.

Входят в состав всех клеточных мембран, служат запасным ис­точником энергии в организме.

Белки

Углерод, водород, ки­слород, азот, сера, фосфор.

1. Главный строительный материал клетки;

2. ускоряют течение химических реакций в организме;

3. запасной источник энергии для организма.

Нуклеиновые кислоты

Углерод, водо­род, кисло­род, азот, фосфор.

ДНК — определяет состав бел­ков клетки и передачу наслед­ственных признаков и свойств следующим поколениям;

РНК — образование характерных для данной клетки белков.

АТФ (аденозинтрифосфат)

Рибоза, аденин, фосфорная кислота

Обеспечивает запас энергии, участвует в построении нуклеиновых кислот

Размножение клетки (деление клетки) человека

Размножение клеток в человеческом организме происходит путем непрямого деления. В результате дочерний организм получает такой-же набор хромосом, как материнский. Хромосомы — носители наследственных свойств организма, передающихся от родителей потомству.

Этап размножения (фазы деления)Характеристика
Подготовительная

Перед делением число хромосом удваивается. Запасается энергия и вещества, необходимые для деления.
Первая

Начало деления. Центриоли клеточного центра расходятся к полюсам клетки. Хромосомы утолщаются и укорачиваются. Ядерная оболочка растворяется. Из клеточного центра образуется веретено деления.
Вторая

Удвоенные хромосомы размещаются в плоскости экватора клетки. К каждой, хромосоме, прикрепляются плотные нити, которые тянутся от центриолей.
Третья

Нити сокращаются, и хромосомы расходятся к полюсам клетки.
Четвертая

Конец деления. Делится все содержимое клетки и цитоплазма. Хромосомы удлиняются и становятся неразличимыми. Формируется ядерная оболочка, на теле клетки возникает перетяжка, которая постепенно углубляется, разделяя клетку надвое. Образуются две дочерние клетки.

Строение клетки человека человека

У животной клетки, в отличие от растительной, имеется клеточный центр, но отсутствуют: плотная клеточная стенка, поры в клеточной стенке, пластиды( хлоропласты, хромопласты, лейкопласты) и вакуоли с клеточным соком.

Клеточные структурыОсобенности строенияОсновные функции
Плазматическая мембранаБилипидныи (жировой) слой, окруженный бел новым 1 слоямиОбмен веществ между клетками и межклеточным веществом
ЦитоплазмаВязкое полужидкое вещество, в котором располагаются органоиды клеткиВнутренняя среда клетки. Взаимосвязь всех частей клетки и транспорт питательных веществ
Ядро с ядрышкомТельце, ограниченное ядерной оболочкой, с хроматином ( тип и ДНК). Ядрышко находится внутри ядра, принимает участие в синтезе белков.
Контролирующий центр клетки. Передача информации дочерним клеткам с помощью хромосом при делении
Клеточный центрУчасток более густой цитоплазмы с центриолями (и цилиндрические тельца)Участвует в делении клеток
Эндоплазматическая сетьСеть канальцевСинтез и транспорт питательных веществ
РибосомыПлотные тельца, содержащие белок и РНКВ них синтезируется белок
ЛизосомыОкруглые тельца, внутри которых находятся ферментыРасщепляют белки, жиры, углеводы
МитохондрииУтолщённые тельца с внутренними складками ( кристами )В них находятся ,ферменты, при помощи которых пи­тательные вещества расщепляются, а энергия запаса­ется в виде особого вещества — АТФ.
Аппарат ГольджиС топка плоских мембранных мешочковОбразование лизосом

_______________

Источник информации: Биология в таблицах и схемах. / Издание 2е, — СПб.: 2004.

Резанова Е.А. Биология человека. В таблицах и схемах./ М.: 2008.

Общее строение тела человека – Opiq

Сходные по строению, функциям и происхождению клетки вместе с межклеточным веществом образуют ткань.

Все ткани в теле человека выполняют одну основную функцию, например, кровь соединительной ткани связывает различные части организма в единое целое (переносит кислород и питательные вещества ко всем частям тела, выравнивая температуру). С другой стороны, различные части ткани, такие как клетки крови, выполняют разные функции: красные кровяные тельца связывают и транспортируют кислород, а белые участвуют в защите организма.

В теле человека можно выделить четыре основных типа тканей: эпителиальную, соединительную, мышечную и нервную.

Нервная ткань формирует головной и спинной мозг. Нервная ткань образована нервными клетками (нейронами). Они воспринимают раздражения, анализируют их и передают дальше. Нервные клетки состоят из тела и многочисленных отростков. Один из отростков обычно длинный (нейрит, или аксон), остальные – короткие (дендриты). Отростки выполняют разные функции: короткие отростки проводят раздражение к телу клетки, а длинный отросток – от тела клетки. Отходящие от нервных клеток длинные отростки объединяются в нервы.

Мышечная ткань образована мышечными клетками. Эти клетки способны к сокращению, благодаря чему человек может двигаться. Существует три вида мышечной ткани.

Соединительная ткань связывает организм в единое целое и формирует скелет. Отличается большим количеством межклеточного вещества. В организме человека соединительная ткань представлена различными формами:

Эпителиальная ткань выполняет защитную функцию. Клетки ткани расположены вплотную друг к другу. Эпителий покрывает поверхность тела и выстилает внутренние полости. Способностью клеток эпителия к быстрому размножению обеспечивается скорое зарастание поверхностных ран. Выстланные эпителием железы производят различные секреты, например пищеварительные соки желудка и кишечника.

Таблица «Строение клетки» — биология, разное

Таблица 10. Строение клетки.

Органоиды

Строение

Функции

Мебранные структуры

Наружная клеточная мембрана

Ультрамикроскопическая пленка, состоящая из двух мономолекулярных слоев белка и расположенного между ними бимолекулярного слоя лнпидов. Цельность липидного слоя может прерываться белковыми молекулами — «порами»

Изолирует клетку от окружающей среды, обладает избирательной проницаемостью, регулирует процесс поступления веществ в клетку; обеспечивает обмен веществ и энергии с внешней средой, способствует соединению клеток в ткани, участвует в пиноцитозе (поступление жидких веществ)и фагоцитозе; регулирует водный баланс клетки и выводит из нее конечные продукты жизнедеятельности1

Эндоплазматическая сеть (ЭС, ЭПС)

Ультрамикроскопическая система мембран, образующих трубочки, канальцы, цистерны, пузырьки. Строение мембран универсальное (как и наружной), вся сеть объединена в единое целое с наружной мембраной ядерной оболочки и наружной клеточной мембраной. Гранулярная ЭС несет рибосомы, гладкая — лишена их

Обеспечивает транспорт веществ как внутри клетки, так и между соседними клетками. Делит клетку на отдельные секции. в которых одновременно происходят различные физиологические процессы и химические реакции. Гранулярная ЭПС участвует в синтезе белка. Жиры и углеводы синтезируются на гладкой (агранулярной) ЭПС. В каналах ЭПС образуются сложные молекулы белка, синтезируются жиры, транспортируется АТФ

Двумембранные структуры

Митохондрии

Микроскопические органеллы, имеющие двухмембранное строение. Внешняя мембрана гладкая, внутренняя — образует различной формы выросты — кристы. В матриксе митохондрии (полужидком веществе) находятся ферменты, рибосомы, ДНК, РНК

Универсальная органелла, являющаяся дыхательным и энергетическим центром. В процессе кислородного (окислительного) этапа диссимиляции в матриксе с помощью ферментов происходит расщепление органических веществ с освобождением энергии, которая идет на синтез АТФ (на кристах)

Лейкопласты

Микроскопические органеллы, имеющие двумембранное строение. Внутренняя мембрана образует 2-3 выроста. Форма округлая. Бесцветны

Характерны для расти тельных клеток. Служат местом отложения запасных питательных веществ, главным образом крахмальных зерен. На свету их строение усложняется и они преобразуются в хлоропласты. Образуются из пропластид

Хлоропласты

Микроскопические органеллы, имеющие двумембранное строение. Наружная мембрана гладкая. Внутренняя мембрана образует систему двухслойных пластин — тилакоидов стромы и тилакоидов гран. В мембранах тилакоидов гран между слоями молекул белков и липидов сосредоточены пигменты — хлорофилл и каротиноиды. В белковолипидном матриксе находятся собственные рибосомы. ДНК, РНК. Форма хлоропластов чечевице-образная. Окраска зеленая1

Характерны для растительных клеток. Органеллы фотосинтеза, способные создавать из неорганических веществ (СО2 и Н2О) при наличии световой энергии и пигмента хлорофилла органические вещества — углеводы и свободный кислород. Синтез собственных белков. Могут образоваться из пропластид или лейкопластов, а осенью перейти в хромопласты (красные и оранжевые плоды, красные и желтые листья)

Хромопласты

Микроскопические органеллы, имеющие двумембранное строение. Собственно хромопласты имеют шаровидную форму, а образовавшиеся из хлоропластов принимают форму кристаллов каротиноидов, типичную для данного вида растения. Окраска красная, оранжевая, желтая

Характерны для растительных клеток. Придают лепесткам цветков окраску, привлекательную для насекомых-опылителей. В осенних листьях и зрелых плодах, отделяющихся от растения, содержатся кристаллические каротиноиды — конечные продукты обмена

Одномембранные структуры

Аппарат
Гольджи

Микроскопические одномембранные органеллы, состоящие из стопочки плоских цистерн, по краям которых ответвляются трубочки, отделяющие мелкие пузырьки

В общей системе мембран любых клеток — наиболее подвижная и изменяющаяся органелла. В цистернах накапливаются продукты синтеза, распада и вещества, поступившие в клетку, а также вещества, которые выводятся из клетки. Упакованные в пузырьки, они поступают в цитоплазму: одни используются, другие выводятся наружу. В растительной клетке участвует в построении клеточной стенки

Лизосомы

Микроскопические одномембранные органеллы округлой формы. Их число зависит от жизнедеятельности клетки и ее физиологического состояния. В лизосомах находятся лизирующие (растворяющие) ферменты, синтезированные на рибосомах

Переваривание пищи, попавшей в животную клетку при фагоцитозе и пиноцитозе. Защитная функция. В клетках любых организмов осуществляют автолиз (саморастворение органелл), особенно в условиях пищевого или кислородного голодания. У животных рассасывается хвост. У растений растворяются органеллы при образовании пробковой ткани. сосудов древесины

Немембранные структуры

Клеточный центр

Ультрамикроскопическая органелла немембранного строения. Состоит из двух центриолей. Каждая имеет цилиндрическую форму, стенки образованы девятью триплетами трубочек, а в середине находится однородное вещество. Центриоли расположены перпендикулярно друг к другу

Принимает участие в делении клеток животных и низших растений. В начале деления (в профазе) центриоли расходятся к разным полюсам клетки. От центриолей к центромерам хромосом отходят нити веретена деления. В анафазе эти нити притягивают хроматиды к полюсам. После окончания деления центриоли остаются в дочерних клетках, удваиваются и образуют клеточный центр

Органоиды движения

Реснички — многочисленные цитоплазматические выросты на поверхности мембраны

Удаление частичек пыли (реснитчатый эпителий верхних дыхательных путей), передвижение (одноклеточные организмы)

Жгутики — единичные цитоплазматические выросты на поверхности клетки

Передвижение (сперматозоиды, зооспоры, одноклеточные организмы)

Ложные ножки (псевдоподии) — амебовидные выступы цитоплазмы

Образуются у животных в разных местах цитоплазмы для захвата пищи, для передвижения

Миофибриллы — тонкие нити до 1 см длиной и больше

Служат для сокращения мышечных волокон, вдоль которых они расположены

Цитоплазма, осуществляющая струйчатое и круговое движение

Перемещение органелл клетки по отношению к источнику света (при фотосинтезе), тепла, химического раздражителя

Структуры

Строение

Функции

Ядерная оболочка

Двухслойная пористая. Наружная мембрана переходит в мембраны ЭС. Свойственна всем клеткам животных и растений, кроме бактерий и сине-зеленых, которые не имеют ядра

Отделяет ядро от цитоплазмы. Регулирует транспорт веществ из ядра в цитоплазму (РНК, субъединицы рибосом) и из цитоплазмы в ядро (белки, жиры. углеводы, АТФ, вода, ионы)

Хромосомы (хроматин)

В интерфазной клетке хроматин имеет вид мелкозернистых нитевидных структур, состоящих из молекул ДНК и белковой (нуклеопротеидной) обкладки. В делящихся клетках хроматиновые структуры спирал изуются и образуют хромосомы. Хромосома состоит из двух хроматид и после деления ядра становится однохроматидной. К началу следующего деления у каждой хромосомы достраивается вторая хроматида. Хромосомы имеют первичную перетяжку, на которой расположена центромера; перетяжка делит хромосому на два плеча одинаковой или разной длины. У ядрышковых хромосом есть вторичная перетяжка

Хроматиновые структуры — носители ДНК-ДНК состоит из участков — генов, несущих наследственную информацию и передающихся от предков к потомкам через половые клетки. Совокупность хромосом, а следовательно, и генов половых клеток родителей передается детям, что обеспечивает устойчивость признаков, характерных •для данной популяции, вида. В хромосомах синтезируются ДНК, РНК, что служит необходимым фактором передачи наследственной информации при делении клеток и построении молекул белка

 

Ядрышко

Шаровидное тело, напоминающее клубок нитей. Состоит из белка и РНК. Образуется на вторичной перетяжке ядрышковой хромосомы. При делении клеток распадается

Формирование половинок рибосом из рРНК и белка. Половинки (субъединицы) рибосом через поры в ядерной оболочке выходят в цитоплазму и объединяются в рибосомы

Ядерный сок (кариолимфа)

Полужидкое вещество, представляющее коллоидный раствор белков, нуклеиновых кислот, углеводов, минеральных солей. Реакция кислая

Участвует в транспорте веществ и ядерных структур, заполняет пространство между ядерными структурами; во время деления клеток смешивается с цитоплазмой

Клетка – основа жизни на земле

АННОТАЦИЯ

В данной статье рассмотрены основные структурные и функциональные составляющие животной и растительной клетки как элементарной единицы всего живого и важная роль при передаче генетического материала из поколения в поколение. Коротко описана клеточная теория и неклеточные формы жизни, а также типы клеточной организации. Описания бактериальной, животной и растительной клеток и ядра клетки сопровождаются красочными рисунками с подробным описанием составляющих элементов. Также отмечается важная роль в жизнедеятельности организмов апоптоза – естественной, запрограммированной гибели клеток.

ABSTRACT

This article discusses the basic structural and functional components of an animal and plant cell, as an elementary unit of all living things and an important role in the transfer of genetic material from generation to generation. Cell theory and non-cellular life forms are briefly described, as well as types of cellular organization. Descriptions of bacterial, animal and plant cells and the cell nucleus are accompanied by colorful drawings with a detailed description of the constituent elements. An important role in the life of organisms apoptosis is also noted — the natural, programmed cell death.

 

Ключевые слова: клетка, клеточная теория, ядро клетки, хромосомы, белки, апоптоз.

Keywords: cell, cellular theory, cell nucleus, chromosomes, proteins, apoptosis.

 

Введение

Клетка – это основная структурная и функциональная единица всех живых организмов, живая элементарная единица, способная к самовоспроизведению. Живые организмы могут состоять из одной клетки (бактерии, одноклеточные водоросли и одноклеточные животные) или многих клеток.

Тело взрослого человека образуют около ста триллионов клеток. Форма клеток различна и обусловлена их функцией – от круглой (эритроциты) до древообразной (нервные клетки). Размеры клеток также различны – от 0,1-0,25 мкм (у некоторых бактерий) до 155 мм (яйцо страуса в скорлупе). Тело человека образовано клетками различных типов, характерным образом организующихся в ткани, которые формируют органы, заполняют пространство между ними или покрывают снаружи. Клетки окружены межклеточным веществом, обеспечивающим их механическую поддержку и осуществляющим транспорт химических веществ. Самые короткоживущие из них (1-2 дня) – это клетки кишечного эпителия. Ежедневно погибает около 70 миллиардов этих клеток. Примером других короткоживущих клеток являются эритроциты – их ежедневно погибает около 2 миллиардов [3].

Однако есть и такие клетки (например, нейроны, клетки волокон скелетных мышц), продолжительность жизни которых соответствует жизни организма. Нервные клетки мозга, однажды возникнув, уже не делятся, и до конца жизни человека они способны поддерживать необходимые связи в нервной системе. Интересно то, что при нашем рождении в мозгу уже существует около 14 миллиардов клеток. И это количество не увеличивается до самой смерти, а, наоборот, постепенно уменьшается, т. е. поврежденные ткани мозга неспособны восстанавливаться путем регенерации. После того как человеку исполняется 25 лет, ежедневно происходит сокращение количества клеток мозга на 100 тысяч [1].

Несмотря на свои малые размеры, клетка представляет собой сложнейшую биологическую систему, жизнедеятельность которой поддерживается благодаря разнообразным биохимическим процессам, которые происходят под строгим генетическим контролем. Генетический контроль развития и функционирования клетки осуществляют материальные носители информации – гены. Они сосредоточены главным образом в ядре клетки, но некоторая их часть находится в других клеточных органоидах (митохондриях, пластидах, центриолях).

Строение и функционирование генетических структур клеток на микроскопическом уровне, их количественную и качественную изменчивость изучает одно из направлений генетики, называемое цитогенетикой.

Представление о клетке как об элементарной структурно-функциональной единице всех живых организмов сложилось в результате цепи изобретений и открытий, сделанных в XVI-XX веках:

1590 г. – Янсен изобрел микроскоп, в котором большое увеличение достигалось соединением в тубусе двух линз;

1965 г. – в Кембридже (Англия) установлена первая промышленно изготовленная модель электронного микроскопа.

Естественно, между этими двумя датами происходило множество событий, в результате которых были усовершенствованы микроскопы (основное средство изучения клеток), а также исследования и открытия в области генетики и, в частности, цитологии.

Клеточная теория и неклеточные формы жизни

Результатом длительного исследования строения клеток различных организмов стало создание клеточной теории, у истоков которой в ее современном виде стояли немецкий ботаник М.Я. Шлейден (1804-1881) и зоолог Т. Шванн (1810-1882). В настоящее время эта теория содержит три главных положения:

  • только клетка обеспечивает жизнь в ее структурно-функциональном и генетическом отношении;
  • единственным способом возникновения жизни на Земле является деление ранее существующих клеток;
  • клетки являются структурно-функциональными единицами многоклеточных организмов [2].

Отсюда следует, что клетка – это элементарная единица живого, вне клетки нет жизни, так как в клетке сохраняется и реализуется биологическая информация (даже у вирусов). Современная биология подтверждает, что все клетки одинаковым образом хранят биологическую информацию, передают генетический материал из поколения в поколение, хранят и переносят информацию, регулируют обмен веществ и т. д. Вместе с тем многоклеточный организм обладает свойствами, которые нельзя рассматривать как простую сумму свойств и качеств отдельных клеток.

Таким образом, клетка является обособленной и организационно наименьшей структурой, для которой характерна вся совокупность свойств жизни и которая в соответствующих условиях окружающей среды способна поддерживать в себе эти свойства и передавать их следующим поколениям.

Все многообразие живых существ можно разделить на две резко отличающиеся группы: неклеточные и клеточные формы жизни. Первая группа представляет собой вирусы, способные проникать в определенные живые клетки и размножаться только внутри этих клеток. Подобно всем другим организмам вирусы обладают собственным генетическим аппаратом, кодирующим синтез вирусных частиц, которые собираются из биохимических предшественников, находящихся в клетке-хозяине, используя биосинтетическую и энергетическую системы этой клетки [8].

Вирусы резко отличаются от всех других форм жизни. По строению и организации они представляют собой нуклеопротеидные частицы, по способу репродукции являются внутриклеточными паразитами. Таким образом, вирусы являются внутриклеточными паразитами на генетическом уровне.

Типы клеточной организации

Клеточная структура присуща основной массе живых существ на Земле. Все эти организмы представлены клетками двух типов: прокариотическими и эукариотическими клетками. К прокариотическим клеткам относят бактерии и синезеленые водоросли. Прокариоты – доядерные организмы, не имеющие типичного ядра, заключенного в ядерную мембрану. Вместо ядра у них находится так называемый нуклеотид – ДНК-содержащая зона клетки прокариот (рис. 1.).

 

Рисунок 1. Схема строения бактериальной клетки

 

Строение бактериальной клетки:

1 – цитоплазматическая мембрана; 2 – клеточная стенка; 3 – слизистая капсула; 4 – цитоплазма; 5 – хромосомная ДНК; 6 – рибосомы; 7 – мезосома; 8 – фотосинтетические мембраны; 9 – включения; 10 – жгутики; 11 – пили.

Прокариотическая ДНК не содержит гистоновых белков, но связана с небольшим количеством негистоновых белков. Этот комплекс ДНК и негистоновых белков и образует нуклеотид, который обычно располагается в центре клетки. Мезосомы – это складчатые мембранные структуры, на поверхности которых находятся ферменты, участвующие в процессе дыхания. Клеточная стенка придает бактериям определенную форму и упругость. Капсулы и слизистые слои – это слизистые или клейкие выделения бактерий. Капсула представляет собой относительно толстое и компактное образование, а слизистый слой намного рыхлее. И капсулы, и слизистые слои служат дополнительной защитой для клеток. Многие бактерии подвижны, и эта подвижность обусловлена наличием у них одного или нескольких жгутиков, которые по своей структуре напоминают одну из микротрубочек эукариотического жгута. Пили, или фимбрии – это тонкие выросты на клеточной стенке некоторых грамотрицательных бактерий. Их число варьирует у разных видов от одной до нескольких сотен. Рибосомы – органоиды клетки, участвующие в синтезе белка. У прокариот они несколько мельче эукариотических [6].

Эукариотические клетки представлены двумя подтипами: клетками одноклеточных организмов, которые структурно и физиологически являются самостоятельными организмами, и клетками многоклеточных организмов. Последние разделяют на растительные и животные клетки. На рисунке 2 представлены составы животной и растительной клетки.

 

Рисунок 2. Животная и растительная клетка

 

В клетке можно выделить 4 группы структурных компонентов: 1) мембранная система; 2) клеточные органоиды; 3) цитоплазматический матрикс; 4) клеточные включения. В свою очередь, мембранную систему составляют: 1) клеточная плазматическая мембрана; 2) цитоплазматическая сеть и 3) пластичный комплекс Гольджи. Клеточная мембрана отделяет цитоплазму клетки от наружной среды или клеточной стенки (у растений) и выполняет три основные функции: отграничивающую, барьерную и транспортную. Она играет важную роль в обмене веществ между клеткой и внешней средой, в движении клеток и в сцеплении друг с другом. Цитоплазму всех эукариотических клеток пронизывает сложная система мембран, получившая название цитоплазматической сети. Пластичный комплекс Гольджи обычно локализуется вблизи клеточного ядра и состоит из многочисленных групп цистерн, которые ограничены мембранами, имеющими гладкую поверхность. Одной из основных функций комплекса Гольджи является транспорт веществ и химическая модификация поступающих в него веществ. Другой важной функцией этого комплекса является формирование лизосом [2].

Клеточные органоиды и ядро клетки

Клеточные органоиды (клеточные органеллы) – это постоянные дифференцированные клеточные структуры, имеющие определенные функции и строение. К клеточным органоидам относят ядро, центриоли, митохондрии, рибосомы, лизосомы, пероксисомы, пластиды, жгутики и реснички.

Ядро – важнейшая составная часть клетки. Это наиболее крупный органоид клетки, составляющий 10-20 % ее объема. Оно может находиться в состоянии покоя или деления (мейоза). Ядро управляет всеми процессами жизнедеятельности клетки. Эти процессы сложны и многообразны: клетка должна поддерживать форму, получать извне вещества для пластического и энергетического обмена, синтезировать органические вещества

Клеточное ядро имеет шаровидную или вытянутую форму. Основная функция ядра – хранение наследственной информации или генетического материала. Ядро состоит из ядерной оболочки и расположенных под ней нуклеоплазмы, ядрышка и хроматина (рис. 3).

 

Рисунок 3. Строение ядра клетки

 

Как видно из рисунка, ядерная оболочка пронизана порами диаметром 80-90 нм, количество которых в типичной животной клетке составляет 3-4 тыс. пор. Содержимое клеточного ядра называется нуклеоплазмой, или кариоплазмой. Нуклеоплазма отделена от цитоплазмы ядерной оболочкой. Ядерная оболочка образована двумя    мембранами – наружной и внутренней. Химический состав ядерной оболочки достаточно сложен, основными химическими компонентами ядерных оболочек являются липиды (13-35%) и белки (50-75%) [4].

Ядра клеток могут содержать одно и более ядрышек. Ядрышки состоят из рибонуклеопротеидов, из которых в дальнейшем образуются субъединицы рибосом. Здесь происходит синтез рРНК (рибосомальной РНК).

Хроматин следует считать главным компонентом ядра. В нем заключена наследственная информация, которая передается при каждом делении клетки, а также реализуется в процессе жизнедеятельности самой клетки. Хроматин ядра клетки состоит их хроматиновых нитей. Каждая хроматиновая нить соответствует одной хромосоме, которая образуется из нее путем спирализации.

Из многочисленных свойств и функций ядерной оболочки следует подчеркнуть ее роль как барьера, отделяющего содержимое ядра от цитоплазмы и активно регулирующего транспорт макромолекул между ядром и цитоплазмой. Другой важной функцией ядерной оболочки следует считать ее участие в создании внутриядерной структуры.

Строение и химический состав хромосом.

Хромосомы – это самовоспроизводящиеся органоиды клеточного ядра, являющиеся носителями генов и определяющие наследственные свойства клеток и организмов. Основная функция хромосом – хранение, воспроизведение и передача генетической информации при размножении клеток и организмов. Хромосомы эукариотических клеток состоят в основном из ДНК и белков, которые образуют нуклеопротеиновый комплекс. Белки составляют значительную часть состава хромосом (65%). Все хромосомные белки разделяют на гистоновые и негистоновые [7].

Гистоновые белки, или гистоны – это белки, богатые остатками аргинина и лизина, определяющими их щелочные свойства. Гистоны присутствуют в ядрах в виде комплекса с ДНК. Они выполняют две важные функции – структурную и регуляторную. Структурная функция заключается в том, что они обеспечивают пространственную организацию ДНК в хромосомах и играют важную роль в ее упаковке. Регуляторная функция гистоновых белков состоит в регуляции синтеза нуклеиновых кислот (как ДНК, так и РНК).

Негистоновые белки представлены большим количеством молекул, которые разделяют более чем 100 функций. Среди этих белков есть ферменты, ответственные за репарацию, репликацию, транскрипцию и модификации ДНК. Помимо ДНК и белков в составе хромосом обнаружены небольшие количества РНК, липидов, полисахаридов и ионы металлов.

Морфологию хромосом изучают во время митоза методом микроскопии. В этот период хромосомы максимально спирализованы. В первой половине митоза хромосомы состоят из двух одинаковых по форме структурных и функциональных элементов, называемых хроматидами, которые соединены между собой в области первичной перетяжки. В месте первичной перетяжки расположена центромера – особым образом организованный участок хромосомы, общий для обоих сестринских хроматид.

Во второй половине митоза происходит деление центромеры и отделение хроматид друг от друга. Из них образуются однонитчатые дочерние хромосомы, распределяющиеся между дочерними клетками. Для каждой хромосомы положение центромеры строго постоянно.

В некоторых растительных клетках и всех животных клетках находится характерно окрашиваемая часть цитоплазмы, которую называют центросомой или клеточным центром. В состав центросомы входит пара центриолей, расположенных под прямым углом друг к другу (рис. 4).

 

Рисунок 4. Составные части материнской и дочерней центриоли

 

Стенка центриоли образована   27 микротрубочками, сгруппированными в 9 триплетов. Пару центриолей иногда называют диплосомой. В каждой диплосоме одна центриоль зрелая, материнская, другая – незрелая, дочерняя, является уменьшенной копией материнской [5].

Митохондрии – это органоиды эукариотической клетки, обеспечивающие организм энергией. Форма и размеры митохондрий очень разнообразны. Обычный диаметр митохондрий от 0,2 до 1 мкм, длина достигает 10-12 мкм. Число митохондрий в различных клетках варьирует в широких пределах – от 1 до 107. Митохондрия имеет две мембраны – наружную и внутреннюю, между которыми расположено межмембранное пространство.

Основная функция митохондрии – синтез АТФ, т. е. образование энергии – около 95% в животной клетке и чуть меньше – в растительной, специфических белках и стероидных гормонах.

Рибосома – органоид клетки, осуществляющий биосинтез белка. Представляет собой рибонуклеопротеиновую частицу диаметром 20-30 нм. В прокариотической клетке около 10 тыс. рибосом, а в эукариотической – 50 тыс. Рибосомы состоят из двух субчастиц – большой и малой. В цитоплазме клетки рибосома связывается с мРНК и осуществляет синтез белка.

Лизосома – органоид клеток животных и грибов, осуществляющий внутриклеточное пищеварение. Местом формирования лизосом является комплекс Гольджи. Внутри лизосом содержится более 20 различных ферментов. В клетке обычно находятся десятки лизосом.

Пластиды – это органоиды эукариотической растительной клетки. Каждая пластида ограничена двумя элементарными мембранами. Пластиды разнообразны по форме, размерам, строению и функции. По различной окраске различают хлоропласты, хромопласты и лейкопласты. Обычно в клетке встречается только один из перечисленных пластид. Каждая клетка содержит несколько десятков хлоропластов, в каждом из которых находится 10-60 копий ДНК.

Жгутик – органелла движения ряда простейших. В клетке бывает 1-4 жгутика, а редко и более. Жгутик эукариотической клетки – это вырост толщиной около 0,25 мкм и длиной 150 мкм, покрытый плазматической мембраной. Как и другие органеллы, жгутик имеет сложную структуру. Движутся жгутики, в отличие от ресничек, волнообразно. Ресничка – органелла движения или рецепции у клеток животных и некоторых растений. Движутся реснички обычно маятникообразно.

Цитоплазма клетки состоит из цитоплазматического матрикса и органоидов. Цитоплазматический матрикс заполняет пространство между клеточной мембраной, ядерной оболочкой и другими внутриклеточными структурами. Химический состав цитоплазматического матрикса разнообразен и зависит от выполняемых клеткой функций, а также образует внутреннюю среду клетки и объединяет все внутриклеточные структуры, обеспечивая их взаимодействие.

Клеточные включения – это компоненты цитоплазмы, представляющие собой отложения веществ, временно выведенных из обмена, и конечных его продуктов. Особый вид клеточных включений – остаточные тельца – продукты деятельности лизосом [4; 8].

Естественная гибель клетки (апоптоз).

Апоптоз – регулируемый процесс программируемой клеточной гибели, в результате которого клетка распадается на отдельные апоптотические тельца, ограниченные плазматической мембраной. Фрагменты погибшей клетки обычно очень быстро фагоцитируются макрофагами либо соседними клетками, минуя развитие воспалительной реакции.

К сожалению, до сих пор процесс естественной гибели клеток до конца не изучен. Известно, что в клетке из-за блокирования ферментов прекращается синтез белка, а нет белка – нет и жизни. Морфологически апоптоз характеризуется разрушением ядра и цитоплазмы. «Осколки» погибшей клетки поглощаются и перерабатываются специальными клетками иммунной системы – фагоцитами. Но ведь клетки могут погибнуть и под воздействием случайных факторов (механических, химических и любых других). Случайная гибель клеток (а также ткани, органа) в биологии называется некрозом. Важно то, что естественная клеточная гибель (апоптоз) в отличие от некроза не вызывает воспаления в окружающих тканях [5].

В организме запрограммированная клеточная гибель выполняет функцию, противоположную митозу (делению клетки), и, тем самым, регулирует общее число клеток в организме. Апоптоз играет важную роль в защите организма при вирусных инфекциях. В частности, иммунодефицит при ВИЧ-инфекции определяется нарушениями в контроле апоптоза.

Заключение

В этой статье рассмотрена лишь обобщенная информация о строении растительных и животных клеток. На Земле много живых организмов, но только одна Жизнь: один генетический код, схожее клеточное строение, несколько десятков общих генов. Клетка имеет сложную внутреннюю организацию и специфическое взаимодействие органелл в процессе жизнедеятельности, является элементарной единицей полноценной живой системы. Клетка – это наименьшая самовоспроизводящаяся единица жизни, на уровне клетки протекают рост и развитие, размножение клеток, обмен веществ и энергии. Она является морфологической и физиологической структурой, элементарной единицей растительных и животных организмов. В многоклеточном организме протекающие процессы складываются из совокупности координированных функций его клеток. Без клетки, вне клетки и с разрушением клетки жизнь прекращается. Клетка – это Жизнь!

 

Список литературы:
1. Ахундова Э.М., Салаева С.Д. Генетика: вопросы и ответы. – Баку, 2019. – 381 с.
2. Гринев В.В. Генетика человека. – Минск: БГУ, 2006. – 131 с.
3. Гусейнова Н.Т. Цитология: Учебник. – Баку, 2018. – 224 с.
4. Курчанов Н.А. Генетика человека с основами общей генетики: Учебное пособие. – СПб.: СпецЛит, 2005. – 185 с.
5. Стволинская Н.С. Цитология / Н.С. Стволинская. – М.: Прометей, 2012. – 208 с.
6. Цаценко Л.В., Бойко Ю.С. Цитология. – Ростов-н/Д: Феникс, 2009. – 186 с.
7. Ченцов Ю.С. Введение в клеточную биологию. – М.: Академкнига, 2004. – 495 с.
8. Ченцов Ю.С. Общая цитология: Учебник. – М.: МГУ, 1984. – 442 с.

 

Клетки живых организмов | Кинезиолог

Введение

 Самое ценное, что есть у человека — это его собственная жизнь и жизнь его близких. Самое ценное, что есть на Земле — это жизнь в целом. А в основе жизни, в основе всех живых организмов лежат клетки. Можно сказать, что жизнь на Земле имеет клеточное строение. Вот почему так важно знать, как устроены клетки. Строение клеток изучает цитология — наука о клетках. Но представление о клетках необходимо для хорошего понимания всех биологических дисциплин.

Что же такое клетка?

Определение понятия

Клетка — это структурная, функциональная и генетическая единица всего живого, содержащая наследственную информацию, состоящая из мембранной оболочки и цитоплазмы с органоидами, способная к поддержанию гомеостаза, обмену,  размножению и развитию.  © 2015-2020 Сазонов В.Ф. © 2016-2020 kineziolog.su

Данное определение клетки является хотя и кратким, но достаточно полным. Оно отражает 3 стороны универсальности клетки: 1) структурную, т.е. как единицу строения,, 2) функциональную, т.е. как единицу деятельности, 3) генетическую, т.е. как единицу наследствености и смены поколений. Важной характеристикой клетки является наличие в ней наследственной информации в виде нуклеиновой кислоты — ДНК. Также определение отражает важнейшую черту строения клетки: наличие наружной мембраны (плазмолеммы), которая создаёт границу между клеткой и окружающей её средой. И, наконец, 4 важнейших признака жизни: 1) поддержание гомеостаза, т.е. постоянства внутренней среды в условиях её постоянного обновления, 2) обмен с внешней средой веществом, энергией и информацией (через клеточную мембрану), 3) способность к размножению, т.е. к самовоспроизведению, репродукции, 4) способность к развитию, т.е. к росту,  дифференцировке и формообразованию.

Более краткое, но неполное определение: Клетка — это элементарная (наименьшая и простейшая) единица жизни.

Более полное определение клетки:

Клетка — это ограниченная активной мембраной упорядоченная, структурированная система биополимеров, образующих цитоплазму, ядро и органоиды. Эта биополимерная система участвует в единой совокупности метаболических, энергетических и информационных процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

Ткань — это совокупность клеток, сходных по строению, функциям и происхождению, совместно выполняющих общие функции. У человека в составе четырех основных групп тканей (эпителиальной, соединительной, мышечной и нервной) имеется около 200 различных видов специализированных клеток [Фалер Д.М., Шилдс Д. Молекулярная биология клетки: Руководство для врачей. / Пер. с англ. — М.: БИНОМ–Пресс, 2004. — 272 с.].

Ткани, в свою очередь, образуют органы, а органы — системы органов.

Живой организм начинается от клетки. Вне клетки жизни нет, вне клетки возможно только временное существование молекул жизни, например, в виде вирусов. Но для активного существования и размножения даже вирусам нужны клетки, пусть даже и чужие.

Строение клетки

 На рисунке, представленном ниже, даны схемы строения 6 биологических объектов. Проанилизируйте, какие из них можно считать клетками, а какие нельзя, согласно двум вариантам определения понятия «клетка».  Оформите свой ответ в виде таблички:

Название объектаЭто клетка, потому что…Это не клетка, потому что…Примечание     
1Животная клетка имеет…       
2Растительная клетка        
 3 …        

 

 

 

Видео: Строение клетки кратко

 
Строение клетки под электронным микроскопом
Мембрана

 Важнейшей универсальное структурой клетки является клеточная мембрана (синоним: плазмолемма), покрывающая клетку в виде тонкой плёнки. Мембрана регулирует отношения между клеткой и окружающей её средой, а именно: 1) она частично отделяет содержимое клетки от внешней среды, 2) связывает содержимое клетки с внешней средой.

Клеточная оболочка (=клеточная стенка, =целлюлозная оболочка)

Не следует путать тонкую клеточную мамбрану плазмолемму с толстой целлюлозной клеточной оболочкой, которая есть у растительных клеток. Мембрану не видно в световой микроскоп, она видна только под электронным микроскопом. А клеточную стенку видно уже под небольшим увеличением даже в школьные световые микроскопы (например, на препарате кожицы лука). И даже первооткрыватель клеток и создатель этого термина Роберт Гук смог увидеть её в свой ещё несовершенный световой микроскоп.

Клеточная оболочка состоит в основном из целлюлозы (=клетчатки). И этот материал наиболее удачно сочетает функцию опоры и защиты с процессом роста клетки. Также он обладает достаточно хорошей проницаемостью для обеспечения обмена между клеткой и внешней средой. Именно поэтому целлюлозная клеточная оболочка характерна почти для всех клеток в царстве растений. И, кстати, все хлопковые и льняные ткани, как и изделия из них, состоят как раз из целлюлозы клеточных оболочек. Корковые пробки, которыми укупоривают бутылки — тоже состоят из клеточных оболочек. Бумага — это тоже переработанные клеточные оболочки растительных клеток.

Ядро

Второй по значению и универсальности клеточной структурой является ядро. Оно есть не во всех клетках, в отличие от клеточной мембраы, поэтому мы и ставим его на второе место. В ядре находятся хромосомы, содержащие двойные нити ДНК (дезоксирибонуклеиновой кислоты). Участки ДНК являются матрицами для построения информационных РНК, которые в свою очередь служат матрицами для построения в цитоплазме всех белков клетки. Таким образом, в ядре содержатся как бы «чертежи» строения всех белков клетки.

Цитоплазма

Это полужидкая внутренняя среда клетки, разделённая внутриклеточными мембранами на отсеки. Она обычно имеет цитоскелет для поддержания определённой формы и находится в постоянном движении. В цитоплазме находятся органоиды и включения.

Органоиды

На третье место можно поставить все остальные клеточные структуры, которые могут иметь собственную мембрану и называются органоидами.

Органоиды – это постоянные, обязательно присутствующие структуры клетки, выполняющие специфические функции и имеющие определенное строение. По строению органоиды можно разделить на две группы: мембранные, в состав которых обязательно входят мембраны, и немембранные. В свою очередь, мембранные органоиды могут быть одномембранными – если образованы одной мембраной и двумембранными – если оболочка органоидов двойная и состоит из двух мембран.

Включения

Включения — это непостоянные структуры клетки, которые появляются в ней и исчезают в процессе метаболизма. Различают 4 вида включений:  трофические (с запасом питательных веществ), секреторные (содержащие секрет), экскреторные (содержащие вещества «на выброс») и пигментные (содержащие пигменты — красящие вещества).

Клеточные структуры, включая органоиды (
подробнее)

Включения. Они не относятся к органоидам. Включения — это непостоянные структуры клетки, которые появляются в ней и исчезают в процессе метаболизма. Различают 4 вида включений: трофические (с запасом питательных веществ), секреторные (содержащие секрет), экскреторные (содержащие вещества «на выброс») и пигментные (содержащие пигменты — красящие вещества).

  1. Мембрана (плазмолемма).
  2. Ядро с ядрышком.
  3. Эндоплазматическая сеть: шероховатая (гранулярная) и гладкая (агранулярная).
  4. Комплекс (аппарат) Гольджи.
  5. Митохондрии.
  6. Рибосомы.
  7. Лизосомы. Лизосомы (от гр. lysis — «разложение, растворение, распад» и soma — «тело») — это пузырьки диаметром 200—400 мкм.
  8. Пероксисомы. Пероксисомы — это микротельца (пузырьки-везикулы) 0,1-1,5 мкм в диаметре, окружённые мембраной.
  9.  Протеасомы. Протеасомы – специальные органоиды для разрушения белков.
  10. Сферосомы. Только в растительных клетках. Содержат скопления гидролитических ферментов, липидов, ароматических аминокислот. Основная функция — синтез липидов.
  11. Фагосомы.
  12. Микрофиламенты. Каждый микрофиламент — это двойная спираль из глобулярных молекул белка актина. Поэтому содержание актина даже в немышечных клетках достигает 10% от всех белков.
  13. Промежуточные филаменты. Являются компонентом цитоскелета. Они толще микрофиламентов и имеют тканеспецифическую природу:
  14. Микротрубочки.  Микротрубочки образуют в клетке густую сеть. Стенка микротрубочки состоит из одного слоя глобулярных субъединиц белка тубулина. На поперечном срезе видно 13 таких субъединиц, образующих кольцо.
  15. Клеточный центр.
  16. Пластиды.
  17. Вакуоли. Вакуоли – одномембранные органоиды. Они представляют собой мембранные «ёмкости», пузыри, заполненные водными растворами органических и неорганических веществ.
  18. Реснички и жгутики (специальные органоиды). Состоят из 2-х частей: базального тельца, расположенного в цитоплазме и аксонемы — выроста над поверхностью клетки, который снаружи покрыт мембраной. Обеспечвают движение клетки или движение среды над клеткой.

 Источник: http://meduniver.com/Medical/gistologia/24.html MedUniver

 

Видеолекция. В.Ф. Сазонов: Функционирование клетки. Общие представления о жизнедеятельности клетки живого организма

ы

 

 Видео: Внутренняя жизнь клетки (на рус.языке)

1. Видео по теме лекции: Одноклеточность

 2. Видеолекция: Клеточное строение организма

 

3. Видео: Строение клетки (на английском языке с русскими субтитрами). Рекомендуется для продвинутого уровня.

Видео: Строение клетки (на русском языке)

Видео: Клетки тела

Видео: Знакомство с клетками тела

 4. Видео: Исторический подход к понятию «клетка» (для самостоятельного просмотра)

 

Видео: Органоиды клетки

 

 Видеолекция: Строение клетки, органоиды

 

 5. Видео: Обзор строения клетки: Разнообразие клеток человека (рекомендуется к просмотру в конце курса Цитологии для закрепления и расширения полученных ранее знаний)

Лектор: Егоров Егор Евгеньевич, доктор биологических наук, профессор, ведущий научный сотрудник Института молекулярной биологии им. В.А.Энгельгардта РАН

 Митоз и мейоз — текст лекции

Дополнительные материалы

Видеолекция по цитологии. Читает Сазонов С.В. — зав. кафедрой УГМУ, д.м.н., профессор. Перейти

 

Видеолекция: Биология клетки. д.б.н. Е. Шеваль

Содержание видео: 0:10 Наука о клетке 10:40 Плазматическая мембрана 25:10 Клеточные органеллы 34:15 Компактизованный геном 46:25 Живая клетка 55:10 Размножение клеток 1:08:00 Общение клеток 1:17:15 Гибель клеток 1:31:15 Межклеточное вещество 1:44:48 Ткани животных

Клетка человека | homeofknowledge.ru

Мы знаем, что человек состоит из так называемых клеток. Клетки формируют разнообразные ткани, ткани формируют органы, органы формируют системы человека, системы человека формируют и поддерживают биологическую активность физического тела. Но так же нам известно, что сама клетка состоит из ядра и окружающей её разнообразной структуры, в ядре клетки есть хромосомы, в хромосоме ДНК и РНК и т.д. Получается, что клетка, это просто промежуточная структура, между первоматерией и конечным телом человека. Тогда почему биологи уделяют столько внимания именно клетке? Давайте разбираться, чем так заинтересовала эта структура наших биологов. 
Дело в том, что именно клеточная структура у нас почему-то ассоциируется со словом “жизнь”. У камня например нет клеточной структуры, и мы считаем камень мёртвым (неодушевлённым). А у дерева, цветка или у какой-либо букашки есть клеточная структура, и мы относимся к ним как к живым (одушевлённым).  Клеточное строение (даже одна клетка в единственном числе) создаёт уникальную, замкнутую систему самообеспечения, которая позволяет существовать, и размножаться. В ней, как на большом заводе, много разных рабочих,  строительного материала, управленцев, курьеров и т.д. Все они нужны и важны. Все работают согласованно, без каких-либо сбоев, если структура клетки не нарушена. Для школьного понимания, сначала даётся упрощённое понятие клетки, разъясняя только основные составляющие и функции. К примеру:

В ядре клетки (центр управления) содержатся хромосомы, которые в свою очередь содержат молекулы ДНК, которые и дают инструкции остальным клеточным молекулам, как, кому, и что делать. И если проникнуть в ядро клетки, и изменить молекулу ДНК, то клетка может поменять свою функцию, перестать синтезировать то, что необходимо для существования, и начать синтезировать то, что погубит не только собственную клетку, но и соседние тоже. Так в принципе и поступает вирус. Есть наглядный фильм по этому поводу. Снаружи клетку окружает так называемая плазматическая мембрана, которая защищает внутриклеточный мир от вредных молекул, и наоборот, пропускает в клетку полезные молекулы, а так же выкидывает во вне отходы внутриклеточной деятельности. Между центром (ядром) клетки и мембраной есть ещё много всяких структур (органелл) . Митохондрии, центриоли, лизосомы и пр.
Митохондрии синтезируют нужную молекулу АТФ, центриоли требуются для деления клетки, лизосомы требуются для “переваривания” поступивших из вне молекул и т.д. Всё это описано не один раз и не в одной книге по биологии. В институтах более подробно разбирают каждую молекулу в клетке, наблюдают за ними, анализируют, пытаются влиять на их поведение и т.д. Но есть один очень интересный процесс в клетке – это её деление.
 

Деление клетки.
Есть такая наука в биологии – цитология. Которая подробно изучает функции и процессы в живой клетке, в том числе и деление. И вот как они описывают этот процесс: Перед делением в клетке, центриоли отходят друг от друга, направляясь к противоположенным полюсам клетки, и между ними образуется веретено. Нити веретена тянутся от экватора к полюсам так, что веретено представляет собой единую внутриклеточную структуру. Некоторые из нитей веретена прикрепляются к центромерам хромосом, и создаётся впечатление, что во время митоза они толкают или тянут хромосомы к полюсам. Далее к центриолям подтягивается равное количество хромосом и остальной “строительный материал”, клетка на мгновение исчезает(!), и появляются две новые тождественные клетки. И дальше процесс идёт по накатанной схеме. Есть хорошее видео демонстрирующее этот процесс. И опять тут закралось маленькое но… Как мы знаем, из той же биологии, человек развивается из одной единственной оплодотворённой клетки (зиготной клетки). И мы прекрасно понимаем, что мы состоим из крови, кости, кожи, мышц и т.д., а это всё же разные клетки. Раз кожа отличается от кости, значит и клеточное строение у них будет разное. Вопрос, как одна единственная клетка (зигота) способная делиться только на тождественную клетку развивается в многоклеточный организм, состоящий из разных клеток? Явно наши эмбриологи что-то замалчивают…а может быть они и сами не знают? Поэтому надо понимать, что не все процессы, которые мы наблюдаем, означает, что мы их понимаем. И это только один пример самостоятельного и умного поведения организма человека. В других статьях на портале будет об этом сказано ещё не раз.  А значит, не стоит вмешиваться в эти процессы не понимая их сути.

Ответ §5. Строение клетки. Ткани

1) Рассмотрите рисунок, подпишите основные органоиды клетки. Зелёным цветом отметьте органоиды, имеющие зелёную окраску.

 

  • Ответ:

     

 

2) Заполните таблицу.

 

  • Ответ:

     

    Строение клетки

     

    Органоид

    Значение в клетке

    Ядро

    Хранение наследственной информации

    Цитоплазма

    Связь между органоидами

    Мембрана

    Защита клетки

    Вакуоль

    Хранение продуктов обмена

    Хлоропласты

    фотосинтез

         

 

3) Укажите черты сходства и различия в строении растительных и животных клеток.

 

  • Ответ:

    Клетка

    Сходство

    Различие

    Животная

    Имеют цитоплазму и ядро

    Животная клетка не имеет больших вакуолей, не способна к фотосинтезу ( отсутствуют хлоропласты), а так же не имеет клеточной стенки

    Растительная

     

    Имеет большие вакуоли, клеточную стенку и хлоропласты

 

4) Заполните таблицу.

 

  • Ответ:

                                                                            Ткани животных

     

     

    Ткань

    Особенности строения

    Значение

    эпителиальная

    Почти не имеет межклеточного вещества

    Защищает внутренние органы, предохраняет организм от различных повреждений и проникновения ненужных и чужеродных веществ внутрь

    нервная

    Состоит из нейронов

    Проводит нервные импульсы

    соединительная

    Имеет много межклеточного вещества

    Образует кости, хрящи, которые выполняют в организме немаловажные функции

    мышечная

    Способность сокращаться, некоторые виды тканей содержат многоядерные клетки

    Образуют мышцы тела, которые участвуют в движении

             

 

5) Заполните таблицу.

 

  

Ответ:

 

Ткани растений

 

Ткань

Особенности строения

Значение

образовательная

Мелкие клетки с крупными ядрами без вакуолей

Отвечает за  рост растений

основные

Основная ткань, находящаяся в листьях содержит хлорофилл

Запасающая, фотосинтезирующая

покровная

Клетки плотно соприкасаются друг с другом, имеют плотные оболочки

защита

проводящая

Клетки напоминают сосуды и трубы

 Осуществляет перемещение питательных веществ по растению

механическая

Мертвые клетки с уплощенными и одревесневевшими оболочками

опора

 

6) Выполните задание 1 лабораторной работы 2 «Знакомство с клетками растений»

 а) Зарисуйте клетки кожицы лука, которые вы увидели под микроскопом. Укажите увеличение, при котором вы рассматривали микропрепарат.

 

  • Ответ:

     

 

б) Укажите, в чем отличие внешнего вида клеток кожицы лука малом увеличении микроскопа от их внешнего вида при большом увеличении.

 

 

в) Укажите тип растительной ткани, к которой принадлежит кожица лука. Обоснуйте свой ответ.

 

 

сОбъясните, зачем нужны предметные и покровные стёкла.

 

  • Ответ: На предметное стекло кладут препарат, покровным стеклом его фиксируют, чтобы избежать смещение препарата.


Структура ячейки

| SEER Обучение

Представления о клеточной структуре значительно изменились с годами. Ранние биологи рассматривали клетки как простые мембранные мешочки, содержащие жидкость и несколько плавающих частиц. Современные биологи знают, что клетки намного сложнее, чем это.

В теле есть много разных типов, размеров и форм клеток. Для наглядности вводится понятие «обобщенная ячейка».Он включает функции всех типов ячеек. Клетка состоит из трех частей: клеточной мембраны, ядра и цитоплазмы между ними. Внутри цитоплазмы находятся сложные структуры из тонких волокон и сотен или даже тысяч крохотных, но различных структур, называемых органеллами.

Клеточная мембрана

Каждая клетка тела окружена клеточной (плазменной) мембраной. Клеточная мембрана отделяет материал вне клетки, внеклеточный, от материала внутри клетки, внутриклеточный.Он поддерживает целостность ячейки и контролирует прохождение материалов в ячейку и из нее. Все материалы внутри клетки должны иметь доступ к клеточной мембране (границе клетки) для необходимого обмена.

Клеточная мембрана представляет собой двойной слой молекул фосфолипидов. Белки в клеточной мембране обеспечивают структурную поддержку, образуют каналы для прохождения материалов, действуют как рецепторные участки, действуют как молекулы-носители и обеспечивают маркеры идентификации.

Ядро и ядрышко

Ядро, образованное ядерной мембраной вокруг жидкой нуклеоплазмы, является центром управления клеткой.Нити хроматина в ядре содержат дезоксирибонуклеиновую кислоту (ДНК), генетический материал клетки. Ядрышко представляет собой плотный участок рибонуклеиновой кислоты (РНК) в ядре и место образования рибосом. Ядро определяет, как клетка будет функционировать, а также основную структуру этой клетки.

Цитоплазма

Цитоплазма представляет собой гелеобразную жидкость внутри клетки. Это среда для химической реакции. Он обеспечивает платформу, на которой другие органеллы могут работать внутри клетки.Все функции размножения, роста и репликации клеток выполняются в цитоплазме клетки. Внутри цитоплазмы материалы перемещаются путем диффузии, физического процесса, который может работать только на короткие расстояния.

Цитоплазматические органеллы

Цитоплазматические органеллы — это «маленькие органы», взвешенные в цитоплазме клетки. Каждый тип органелл имеет определенную структуру и определенную роль в функции клетки. Примерами цитоплазматических органелл являются митохондрии, рибосомы, эндоплазматический ретикулум, аппарат Гольджи и лизосомы.

4.1: Структура и функции ячейки

Цели обучения

  • Определите клетку, определите основные общие компоненты клеток человека и проведите различие между внутриклеточной жидкостью и внеклеточной жидкостью
  • Опишите структуру и функции плазматической (клеточной) мембраны
  • Опишите ядро ​​и его функцию
  • Определить структуру и функцию цитоплазматических органелл

Клетка — это наименьшее из живых существ в человеческом организме, а все живые структуры в человеческом теле состоят из клеток.В человеческом теле существуют сотни различных типов клеток, которые различаются по форме (например, круглые, плоские, длинные и тонкие, короткие и толстые) и размеру (например, маленькие гранулярные клетки мозжечка в головном мозге (от 4 микрометров) до к огромным ооцитам (яйцеклеткам), продуцируемым в женских репродуктивных органах (100 микрометров), и функциям. Однако все клетки состоят из трех основных частей: плазматической мембраны , , цитоплазмы , и ядра. называется клеточной мембраной) представляет собой тонкий гибкий барьер, который отделяет внутреннюю часть клетки от внешней среды клетки и регулирует то, что может входить и выходить из клетки.Внутренне клетка делится на цитоплазму и ядро. Цитоплазма ( цито — = клетка; — плазма = «нечто сформированное») — это место, где выполняется большинство функций клетки. Это немного похоже на смешанное фруктовое желе, где водянистое желе называется цитозолем ; а различные фрукты в нем называются органеллами . Цитозоль также содержит множество молекул и ионов, участвующих в функциях клетки. Различные органеллы также выполняют разные клеточные функции, и многие из них также отделены от цитозоля мембранами.Самая большая органелла, , ядро ​​ отделена от цитоплазмы ядерной оболочкой (мембраной). Он содержит ДНК (гены), которые кодируют белки, необходимые для функционирования клетки.

Вообще говоря, внутренняя среда клетки называется внутриклеточной жидкостью (ICF) (внутри- = внутри; относится ко всей жидкости, содержащейся в цитозоле, органеллах и ядре), в то время как среда вне клетки называется внеклеточной жидкостью . жидкость (ECF) (extra- = снаружи; относится ко всей жидкости вне ячеек).Плазма, жидкая часть крови, является единственным отделением внеклеточной жидкости, которое связывает все клетки в организме.

Рисунок \ (\ PageIndex {1} \) Трехмерное представление простой человеческой клетки. Удаляли верхнюю половину объема ячейки. Цифра 1 показывает ядро, цифры с 3 по 13 показывают различные органеллы, погруженные в цитозоль, а цифра 14 на поверхности клетки показывает плазматическую мембрану

Проверка концепций, терминов и фактов

Вопросы для изучения Напишите свой ответ в форме предложения (не отвечайте нечеткими словами)

1. Что такое клетка?
2. Что такое плазматическая мембрана?
3. Что такое цитоплазма?
4. Что такое внутриклеточная жидкость (ВКЖ)?
5. Что такое внеклеточная жидкость (ВКЖ)?

Плазматическая (клеточная) мембрана отделяет внутреннюю среду клетки от внеклеточной жидкости. Он состоит из жидкого бислоя фосфолипидов (два слоя фосфолипидов), как показано на рисунке \ (\ PageIndex {2} \) ниже, и других молекул. Не многие вещества могут пересекать фосфолипидный бислой, поэтому он служит для отделения внутренней части клетки от внеклеточной жидкости.Другие молекулы, обнаруженные в мембране, включают холестерин, белки, гликолипиды и гликопротеины , некоторые из которых показаны на рисунке \ (\ PageIndex {3} \) ниже. Холестерин, разновидность липидов, делает мембрану немного прочнее. Различные белки, пересекающие бислой (интегральные белки) или на его поверхности (периферические белки), выполняют множество важных функций. Канальные и переносящие (переносящие) белки регулируют перемещение определенных молекул и ионов внутрь и из клеток. Рецепторные белки в мембране инициируют изменения в активности клеток, связываясь и реагируя на химические сигналы, такие как гормоны (например, замок и ключ). Другие белки включают те, которые действуют как структурные якоря, связывая соседние клетки и ферменты. Гликопротеины и гликолипиды в мембране действуют как идентификационные маркеры или метки на внеклеточной поверхности мембраны. Таким образом, плазматическая мембрана выполняет множество функций и работает как шлюз, так и селективный барьер.

Рисунок \ (\ PageIndex {2} \) Фосфолипиды образуют основную структуру клеточной мембраны.Гидрофобные хвосты фосфолипидов обращены к сердцевине мембраны, избегая контакта с внутренней и внешней водной средой. Гидрофильные головки обращены к поверхности мембраны, контактируя с внутриклеточной и внеклеточной жидкостью.

Рисунок \ (\ PageIndex {3} \) Небольшая область плазматической мембраны, на которой показаны липиды (фосфолипиды и холестерин), различные белки, гликолипиды и гликопротеины.

Проверка концепций, терминов и фактов

Вопросы для изучения Напишите свой ответ в форме предложения (не отвечайте нечеткими словами)

1.Какова функция клеточной мембраны?
2. Какие три типа биомолекул образуют клеточную мембрану?

Почти все клетки человека содержат ядро, в котором находится ДНК — генетический материал, который в конечном итоге контролирует все клеточные процессы. Ядро — это самая большая клеточная органелла, и единственная видимая в световой микроскоп. Подобно тому, как цитоплазма клетки окружена плазматической мембраной, ядро ​​окружено ядерной оболочкой , которая отделяет содержимое ядра от содержимого цитоплазмы. Ядерные поры в оболочке представляют собой небольшие отверстия, которые контролируют, какие ионы и молекулы (например, белки и РНК) могут входить и выходить из ядра. Помимо ДНК, ядро ​​содержит множество ядерных белков. Вместе ДНК и эти белки называются хроматином . Область внутри ядра, называемая ядрышком , связана с производством молекул РНК, необходимых для передачи и выражения информации, закодированной в ДНК. См. Все эти структуры ниже на рисунке \ (\ PageIndex {4} \).

Рисунок \ (\ PageIndex {4} \) Ядро клетки человека. Найдите ДНК, ядерную оболочку, ядрышко и ядерные поры. На рисунке также показано, как внешний слой ядерной оболочки продолжается как грубый эндоплазматический ретикулум, что будет обсуждаться в следующей задаче обучения.

Проверка концепций, терминов и фактов

Вопросы для изучения Напишите свой ответ в форме предложения (не отвечайте нечеткими словами)

1. Что такое ядерная оболочка?
2.Что такое ядерная пора?
3. Какова функция ядра?

Органелла — это любая структура внутри клетки, которая выполняет метаболическую функцию. Цитоплазма содержит множество различных органелл, каждая из которых выполняет свою функцию. (Обсуждаемое выше ядро ​​является самой крупной клеточной органеллой, но не считается частью цитоплазмы). Многие органеллы представляют собой клеточные компартменты, отделенные от цитозоля одной или несколькими мембранами, очень похожими по структуре на клеточную мембрану, в то время как другие, такие как центриоли и свободные рибосомы, не имеют мембран.См. Рисунок \ (\ PageIndex {5} \) и таблицу \ (\ PageIndex {1} \) ниже, чтобы узнать структуру и функции различных органелл, таких как митохондрии (которые специализируются на производстве клеточной энергии в форме АТФ) и рибосомы (которые синтезируют белки, необходимые для функционирования клетки). Мембраны грубого и гладкого эндоплазматического ретикулума образуют сеть взаимосвязанных трубок внутри клеток, которые являются продолжением ядерной оболочки. Эти органеллы также связаны с аппаратом Гольджи и плазматической мембраной посредством везикул.В разных клетках содержится разное количество разных органелл в зависимости от их функции. Например, мышечные клетки содержат много митохондрий, а клетки поджелудочной железы, вырабатывающие пищеварительные ферменты, содержат много рибосом и секреторных пузырьков.

Рисунок \ (\ PageIndex {5} \) Типичный пример клетки, содержащей первичные органеллы и внутренние структуры. В таблице \ (\ PageIndex {1} \) ниже описаны функции митохондрии, шероховатой и гладкой эндоплазматической сети, аппарата Гольджи, секреторных пузырьков, пероксисом, лизосом, микротрубочек и микрофиламентов (волокон цитоскелета)

Проверка концепций, терминов и фактов

Вопросы для изучения Напишите свой ответ в форме предложения (не отвечайте нечеткими словами)

1.Что такое органелла?
2. Какие органеллы перечислены в модуле?

частей человеческой клетки

Я помню, как учился в 7-м классе мистера Фарнсворта, когда мы впервые действительно начали изучать клетки. Его комната выглядела как типичная школьная лаборатория — высокие жесткие столы с горелками Бунзена и газовыми форсунками, к которым никто не мог прикасаться, и шкаф, полный мертвых вещей, взвешенных в жидкости в банках. Больше всего в комнате мне нравился гигантский плакат с изображением Галактики Треугольник (я был, есть и всегда буду безвозвратно очарован космосом) на стене за его столом.

Но второй моей любимой вещью был плакат, изображающий внутреннюю часть камеры. Он висел на дальней правой стене рядом с классной доской. Хотя изображение Треугольника было экспоненциально меньше реальной галактики, поэтому мы могли видеть его целиком, изображение клетки было экспоненциально на больше по той же причине. Клетка была собственным миром, но вместо звезд, газов и темной материи были митохондрии, ядро ​​и цитоплазма. Это сказало мне, что когда вы подошли к делу, не было большой разницы между клеткой и галактикой.

Мой разум в 7-м классе = взорван.

Клетки удивительны, мелочи, и я имею в виду маленькие — клетки крошечные. При правильных условиях вы, , могли бы увидеть амебу протей или парамеций. Чтобы лучше понять размер клеток, в Учебном центре генетических наук Университета штата Юта есть забавная интерактивная шкала. Приготовьтесь удивляться.

Есть два типа клеток: прокариоты и эукариоты. Эукариоты содержат ядро, а прокариоты — нет.Вы, дорогой читатель, являетесь эукариотическим существом. Вы состоите из триллионов эукариотических клеток, которых насчитывается более 200 различных типов. Каждый тип эукариотических клеток специализируется на выполнении определенных функций. Например, костные клетки формируют и регенерируют кости. Когда-нибудь ломали кость? В течение нескольких дней клетки, называемые фибробластами, начинают откладывать костный матрикс.

Чтобы узнать больше о клетках, ознакомьтесь с нашей бесплатной электронной книгой о клетках человека!

Клетки можно разделить на четыре группы: соматические, гаметные, зародышевые и стволовые.Соматические клетки — это все клетки тела, которые не являются половыми клетками, например клетки крови, нейроны и остеоциты. Гаметы — это половые клетки, которые соединяются во время полового размножения. Зародышевые клетки производят гаметы. Стволовые клетки (возможно, вы хорошо знакомы с этим термином, потому что он всегда попадает в заголовки) похожи на клетки с чистого листа, которые могут дифференцироваться в специализированные клетки и реплицироваться.

Генетическая информация в каждой клетке действует как своего рода инструкция, рассказывающая клетке, как функционировать и размножаться.

Почему бы нам не взглянуть на внутреннюю часть типичной клетки?


Типичная эукариотическая клетка

Изображение из A&P 6.

Плазматическая мембрана — это именно то, на что она похожа: мембрана из плазмы. Мембраны — это структуры, разделяющие вещи; в этом случае плазматическая мембрана клетки отделяет ее внутреннюю часть от окружающей среды вокруг клетки. Однако он не является непроницаемым, так как он избирательно позволяет определенным молекулам входить и выходить.

Органеллы — это структуры внутри плазматической мембраны.Каждая органелла выполняет особую функцию. Их называют органеллами, потому что они действуют как органы клетки.

Внутриклеточная жидкость или цитозоль — это жидкость, находящаяся внутри клетки. Хотя большая часть его состава — вода, остальное не очень хорошо изучено. Когда-то он считался простым раствором молекул, но теперь он организован на множестве уровней.

Изображение из A&P 6.

Ядро — это большая органелла, содержащая генетическую информацию клетки. Большинство клеток имеют только одно ядро, но некоторые имеют более одного ядра, а другие, например зрелые эритроциты, не имеют его вообще.Внутри ядра находится сферическое тело, известное как ядрышко, которое содержит кластеры белка, ДНК и РНК. Генетическая информация клетки закодирована в ДНК. Ядро служит для содержания ДНК и транскрипции РНК, которая выходит через поры в ядерной мембране.


Представляем: Органеллы

Хотя все части клетки важны, вот некоторые из наиболее узнаваемых.


Эндоплазматический ретикулум

Помимо того, что это очень забавно, эндоплазматический ретикулум (ЭР) — это сеть заключенных в мембрану мешочков в клетке, которые упаковывают и транспортируют материалы для клеточного роста и других функций.Есть два типа ER: гладкая и грубая.

Изображение из A&P 6.


Комплекс Гольджи / Аппарат

Подобно ER, комплекс (или аппарат) Гольджи представляет собой органеллу, которая упаковывает белки и липиды в везикулы для транспортировки.

Изображение из A&P 6.


Митохондрии

«Человек — это целый мир для митохондрии, точно так же, как наша планета для нас. Но мы гораздо больше зависим от митохондрий, чем земля от нас.Земля могла бы прекрасно обойтись без людей, но если что-нибудь случится с нашими митохондриями, мы умрем ». — Ветер в двери Мадлен Л’Энгль (1973)

Изображение из A&P 6.

Хотя концепция г-жи Л’Энгл о митохондриях была больше выдумкой, чем наукой (насколько я знаю, митохондрии не разговаривают!), Она открыла моему десятилетнему ребенку глаза на чудеса нашего тела. До плаката с камерой мистера Фарнсворта была « Time Trilogy ».

Митохондрии могут насчитывать от сотен до тысяч, в зависимости от клетки. Они известны как «силовая установка» клетки, являясь основным источником энергии. Посредством аэробного дыхания митохондрии производят большую часть аденозинтрифосфата (АТФ) клетки. Активные клетки мышц, печени и почек имеют большое количество митохондрий для поддержания высоких метаболических потребностей.

Рибосомы либо свободно плавают в цитозоле, либо связаны с ЭР, либо располагаются на внешней поверхности ядерной мембраны.Рибосомы содержат более 50 белков и высокое содержание рибосомальной РНК. Их основная функция — синтез белков, которые затем используются органеллами внутри клетки, плазматической мембраной или даже структурами вне клетки.

Эти маленькие ребята похожи на помойки в камере. Лизосомы содержат ферменты кислой гидролазы, которые расщепляют и переваривают макромолекулы, старые части клеток и микроорганизмы. Они происходят от комплекса Гольджи.

В ячейке больше структур и функций (например, намного больше, чем на ), чем указано здесь, но это сообщение на другой день!

Вы инструктор? У нас есть отмеченные наградами 3D-продукты и ресурсы для вашего курса анатомии и физиологии! Узнайте больше здесь.

Ячейка | Анатомия и физиология I

Клетки — основа жизни, основная структурная единица живых существ. Молекулы, такие как вода и аминокислоты, не живы, а клетки живы! Вся жизнь состоит из клеток того или иного типа.

Одним из отличительных признаков живых систем является способность поддерживать гомеостаз или относительно постоянное внутреннее состояние. Клетка — это первый уровень сложности, способный поддерживать гомеостаз, и это уникальная структура клетки, которая обеспечивает выполнение этой важной функции.

В этом разделе курса вы узнаете о ячейке и всех частях, которые делают ее функциональной. Вы также сосредоточитесь на клеточной мембране, то есть структуре, которая окружает клетку и отделяет ее внутреннюю среду от внешней. Это важный компонент, потому что он контролирует, что может входить и выходить из ячейки. В этом разделе также будет описано, как клетки размножаются для поддержания гомеостаза.

Текущая клеточная теория утверждает, что:

  1. Все известные живые существа состоят из одной или нескольких клеток.
  2. Все новые клетки создаются ранее существовавшими клетками, деляющимися на две части.
  3. Клетка — это самая основная единица структуры и функции всех живых организмов.

Современные теоретики клетки утверждают, что все функции, важные для жизни, происходят внутри клетки; и что во время клеточного деления клетка содержит и передает следующему поколению информацию, необходимую для проведения и регулирования функционирования клетки.

Давайте начнем наше исследование клетки с изучения анатомии клетки животного.Каждая ячейка состоит из трех компонентов, показанных на изображении выше.

  1. Клеточная мембрана, которая окружает и защищает клетку
  2. Цитоплазма, представляющая собой водянистую внутреннюю часть клетки, содержащую ионы, белки и органеллы
  3. Органеллы, выполняющие все действия, необходимые для жизни, роста и воспроизводства клетки

Внутри тела клетки представляют собой уровень организации между органеллами и тканями. Органеллы, в свою очередь, состоят из специализированных макромолекул, а ткани — из совокупностей специализированных клеток.Ткани мозга, почек, печени, мышц и легких отличаются друг от друга из-за структуры и функции составляющих их клеток. Таким образом, клетки, составляющие каждый тип ткани, различаются по форме, размеру и внутренней структуре, что позволяет выполнять их специфические физиологические функции в ткани. При изучении анатомии и физиологии следует помнить о том, что структура определяет функцию. Когда вы смотрите на форму клетки, она дает вам представление о ее функции.

Обратите внимание на ячейки ниже и подумайте, какая форма необходима для ее роли.Посмотрите, сможете ли вы сопоставить ячейку с ее функцией.

Органеллы

Каждый клеточный процесс осуществляется в определенном месте клетки, часто расположенном внутри или вокруг органеллы . Подумайте об органелле как об уровне организации между макромолекулами и клеткой. Органеллы выполняют специализированные задачи внутри клетки, локализируя такие функции, как репликация, выработка энергии, синтез белка и переработка пищи и отходов. Различные клетки различаются по расположению и количеству органелл, а также по структуре, что дает начало сотням типов клеток, обнаруженных в организме.

Цель этого раздела — понять органеллы клетки, то, как они взаимодействуют друг с другом и как они функционируют во время транспортировки, роста и деления в клетке. Вы узнаете о контролируемой химической среде, которую поддерживает клетка, и о том, какие ограничения это накладывает на типы химических реакций, которые она может выполнять. Этот фон жизненно важен для понимания ключевых процессов, таких как то, как клетка высвобождает энергию из глюкозы, производит и сворачивает белки, а также проходит через рост и деление клеток.

Представьте себе город и различные рабочие места в городе. Клетка подобна каждой органелле, служащей определенной цели. Есть органеллы, работа которых заключается в придании клетке формы и структуры, во многом напоминающих городские улицы и мосты. Эти богатые белком органеллы включают промежуточных филаментов , микротрубочек и микрофиламентов . Некоторые из них действительно перемещают другие органеллы по клетке или изменяют форму клетки. Когда мышечная клетка сокращается или сокращается, это происходит за счет микрофиламентов, состоящих из белков актина и миозина.Одна особая органелла, состоящая из микротрубочек, расположена в области около ядра, центросомы . Центросома содержит пару пучков микротрубочек, известных как центриолей . Центриоли важны, потому что они перемещают хромосомы к противоположным концам клетки во время репликации клетки, называемой митозом. Нейроны не имеют центриолей и не могут реплицироваться.

Другие органеллы помогают синтезировать белки, необходимые клетке. Эти белковые фабрики называются рибосомами .Они могут быть разбросаны внутри клетки или присоединены к системе мембранных каналов, называемой эндоплазматическим ретикулумом или ER. Когда к ER прикреплены рибосомы, это называется грубым ER (рибосомы придают ему грубый или зернистый вид). Когда в ER отсутствуют рибосомы, он называется гладким ER и функционирует для синтеза липидов и хранения токсинов. Когда белок произведен, его нужно сложить в определенную форму, чтобы он работал. Часто необходимо присоединять дополнительные боковые цепи углеводов.Белок перерабатывается в грубой ER. Как только он сформирован, он попадает в аппарат Гольджи, который является растением-распределителем для клетки. Он завершает любой процессинг белка, а затем упаковывает его в везикулу для транспортировки к месту назначения. Некоторые белки необходимы клеточной мембране, и везикулы гарантируют, что они достигают мембраны. Аппарат Гольджи также производит везикулы особого типа, называемые лизосомами . Лизосома — это мусорщик клетки.Он поглощает клеточный мусор и отходы и разрушает их. Лизосома содержит очень мощные гидролитические ферменты для достижения этой цели. Очень важно, чтобы ферменты оставались в лизосоме, иначе они разрушили бы клетку.

Энергетическая установка клетки — это митохондрий . Эта органелла вырабатывает АТФ или энергию для клетки. Митохондрии даже имеют свою собственную ДНК, называемую митохондриальной ДНК (мДНК), и могут реплицироваться.

Наконец, есть контроллер ячейки. Это ядро ​​ .Не все клетки имеют ядро ​​и называются безъядерными. Если вы посмотрите на изображение красных кровяных телец, вы увидите белую точку в центре клетки — это то место, где раньше находилось ядро. Ядро выбрасывается, когда они созревают. Некоторые клетки имеют более одного ядра и называются многоядерными и . Клетки скелетных мышц — это очень большие клетки и многоядерные клетки. Ядро содержит ДНК клетки и ядрышко. Ядрышко — это органелла, из которой образуются рибосомы.ДНК — это ваш генетический код. Он содержит гены, которые содержат инструкции по выработке каждого белка в вашем организме. Ядро окружено собственной мембраной с крошечными отверстиями, называемыми ядерными порами . Мембрана называется ядерной мембраной или ядерной оболочкой.

Интерактивная диаграмма ниже показывает рисунок эукариотической клетки. Компоненты клетки в списке связаны с изображениями, которые выделяют те же самые структуры в живой клетке.

Ядро и цитоплазма | Анатомия и физиология

Цели обучения

  • Опишите структуру и функцию ядра
  • Объясните организацию ДНК в ядре
  • Опишите структуру и функцию основных клеточных органелл

Теперь, когда вы узнали, что плазматическая мембрана окружает все клетки, вы можете погрузиться внутрь прототипной клетки человека, чтобы узнать о ее внутренних компонентах и ​​их функциях.Клетки животных содержат три основных участка: плазматическую мембрану, ядро ​​и цитоплазму. Ядро — это центральная органелла клетки, которая содержит ДНК клетки (рис. 3.6). Цитоплазма состоит из двух частей: цитозоля и органелл. Цитозоль , желеобразное вещество внутри клетки, обеспечивает жидкую среду, необходимую для биохимических реакций. Органелла («маленький орган») — это один из нескольких различных типов мембранных тел в клетке, каждое из которых выполняет уникальную функцию.Точно так же, как различные органы тела работают вместе в гармонии для выполнения всех функций человека, множество различных клеточных органелл работают вместе, чтобы поддерживать здоровье клетки и выполнять все ее важные функции.

Рисунок 3.6. Прототипная клетка человека
Хотя это изображение не указывает на какую-либо конкретную человеческую клетку, оно является прототипом клетки, содержащей первичные органеллы и внутренние структуры.

Ядро

Ядро — самая большая и самая заметная из органелл клетки (Рисунок 3.7). Ядро обычно считается центром управления клеткой, потому что оно хранит все генетические инструкции для производства белков. Интересно, что некоторые клетки тела, например мышечные, содержат более одного ядра, которое называется многоядерным. Другие клетки, такие как красные кровяные тельца (эритроциты) млекопитающих, вообще не содержат ядер. По мере созревания эритроциты выбрасывают свои ядра, освобождая место для большого количества молекул гемоглобина, которые переносят кислород по всему телу. Без ядер продолжительность жизни эритроцитов коротка, поэтому организм должен постоянно производить новые.

Рисунок 3.7. Ядро
Ядро — это центр управления клеткой. Ядро живых клеток содержит генетический материал, который определяет всю структуру и функцию этой клетки.

Внутри ядра находится план, который диктует все, что клетка будет делать, и все продукты, которые она будет производить. Эта информация хранится в ДНК. Ядро отправляет «команды» клетке через молекулярные мессенджеры, которые транслируют информацию из ДНК.Каждая клетка вашего тела (за исключением половых клеток) содержит полный набор вашей ДНК. Когда клетка делится, ДНК должна быть продублирована, чтобы каждая новая клетка получала полный набор ДНК. В следующем разделе мы исследуем структуру ядра и его содержимое, а также процесс репликации ДНК.

Организация ядра и его ДНК

Как и большинство других клеточных органелл, ядро ​​окружено мембраной, называемой ядерной оболочкой .Это мембранное покрытие состоит из двух смежных липидных бислоев с тонким жидким пространством между ними. Эти два бислоя охватывают ядерные поры. Ядерная пора — это крошечный проход для прохождения белков, РНК и растворенных веществ между ядром и цитоплазмой. Внутри ядерной оболочки находится гелеобразная нуклеоплазма с растворенными веществами, которые включают строительные блоки нуклеиновых кислот. Также может быть темная масса, часто видимая под простым световым микроскопом, называемая ядрышком (множественное число = ядрышки).Ядрышко — это область ядра, которая отвечает за производство РНК, необходимой для построения рибосом. После синтеза вновь созданные субъединицы рибосомы покидают ядро ​​клетки через ядерные поры. Генетические инструкции, которые используются для построения и поддержания организма, упорядоченно расположены в цепях ДНК. Внутри ядра расположены нити , хроматин , состоящий из ДНК и связанных белков (рис. 3.8). Хроматин — это вязкая волокнистая форма ДНК, которая позволяет эффективно упаковывать ДНК в ядре, сохраняя при этом структуру, позволяющую синтезировать белки на ранних стадиях.Вдоль нитей хроматина ДНК обернута вокруг набора белков гистон . Когда клетка находится в процессе деления, хроматин конденсируется в хромосомы, так что ДНК можно безопасно транспортировать к «дочерним клеткам». Хромосома состоит из ДНК и белков; это конденсированная форма хроматина. Подсчитано, что у человека почти 22 000 генов распределены по 46 хромосомам.

Рисунок 3.8. Макроструктура ДНК
Нити ДНК обернуты вокруг поддерживающих гистонов.Эти белки все больше связываются и конденсируются в хроматин, который плотно упаковывается в хромосомы, когда клетка готова к делению.

Органеллы эндомембранной системы

Набор из трех основных органелл вместе формирует внутри клетки систему, называемую эндомембранной системой. Эти органеллы работают вместе для выполнения различных клеточных задач, включая задачу производства, упаковки и экспорта определенных клеточных продуктов. Органеллы эндомембранной системы включают эндоплазматический ретикулум, аппарат Гольджи и везикулы.

Эндоплазматическая сеть

Эндоплазматический ретикулум , , (ER), представляет собой систему каналов, которые являются продолжением ядерной мембраны (или «оболочки»), покрывающей ядро, и состоящей из того же материала липидного бислоя. ER можно представить себе как серию извилистых магистралей, похожих на водные каналы Венеции. ER обеспечивает проходы по большей части клетки, которые функционируют при транспортировке, синтезе и хранении материалов.Обмотка ER приводит к большой площади мембранной поверхности, которая поддерживает его многие функции (рис. 3.9).

Рисунок 3.9. Эндоплазматическая сеть (ER)
(a) ER представляет собой извилистую сеть тонких мембранных мешочков, находящихся в тесной связи с ядром клетки. Гладкая и шероховатая эндоплазматическая сеть очень различаются по внешнему виду и функциям (источник: ткань мыши). (b) Rough ER усеяна многочисленными рибосомами, которые являются участками синтеза белка (источник: ткань мыши).EM × 110000. (c) Smooth ER синтезирует фосфолипиды, стероидные гормоны, регулирует концентрацию клеточного Ca ++ , метаболизирует некоторые углеводы и расщепляет определенные токсины (источник: ткань мыши). EM × 110 510. (Микрофотографии предоставлены Медицинской школой Риджентс Мичиганского университета © 2012)

Эндоплазматический ретикулум может существовать в двух формах: грубый ER и гладкий ER. Эти два типа ER выполняют очень разные функции и могут быть найдены в очень разных количествах в зависимости от типа клетки.Грубый ER (RER) называется так, потому что его мембрана усеяна встроенными гранулами — органеллами, называемыми рибосомами, что придает RER неровный вид.

A рибосома представляет собой органеллу, которая служит местом синтеза белка. Его можно обнаружить свободно плавающим в цитоплазме или прикрепленным к ER. Он состоит из двух субъединиц рибосомной РНК, которые оборачиваются вокруг мРНК, чтобы запустить процесс трансляции, стадию синтеза белка. Синтез белка состоит из двух стадий: транскрипции и трансляции.Транскрипция происходит внутри ядра и представляет собой фазу синтеза белков, в которой мРНК копируется из ДНК. МРНК покидает ядро ​​через ядерные поры и переходит к рибосоме. Затем рибосома «считывает» или интерпретирует инструкции внутри мРНК и использует передающую РНК (тРНК) для связывания аминокислот в соответствующем порядке с образованием белка ( рис. 3.10, ). Как правило, белок синтезируется внутри рибосомы и высвобождается в канале грубого ЭПР, где к нему могут быть добавлены сахара (посредством процесса, называемого гликозилированием), прежде чем он будет транспортирован внутри везикулы на следующий этап процесса упаковки и транспортировки. : аппарат Гольджи.

Рисунок 3.10. От ДНК к белку: транскрипция через трансляцию
Транскрипция в ядре клетки производит молекулу мРНК, которая модифицируется и затем отправляется в цитоплазму для трансляции. Транскрипт расшифровывается в белок с помощью молекул рибосомы и тРНК.

Smooth ER (SER) не содержит этих рибосом. Одна из основных функций гладкого ER — синтез липидов. Гладкий ER синтезирует фосфолипиды, основной компонент биологических мембран, а также стероидные гормоны.По этой причине клетки, вырабатывающие большие количества таких гормонов, например, женские яичники и мужские семенники, содержат большое количество гладкого ЭПР. В дополнение к синтезу липидов гладкий ЭПР также изолирует (то есть накапливает) и регулирует концентрацию ионов кальция в мышечной и нервной ткани. Гладкий ER дополнительно метаболизирует некоторые углеводы и выполняет роль детоксикации в печени, расщепляя определенные токсины. В отличие от гладкого ER, основная задача грубого ER — это синтез и модификация белков, предназначенных для клеточной мембраны или для экспорта из клетки.Для этого синтеза белка многие рибосомы прикрепляются к ER (придавая ему вид грубого ER).

Аппарат Гольджи

Аппарат Гольджи отвечает за сортировку, модификацию и отправку продуктов, поступающих из неотложной неотложной помощи, во многом как почтовое отделение. Аппарат Гольджи выглядит как сложенные стопкой плоские диски, почти как стопки блинов странной формы. Как и ER, эти диски являются перепончатыми. У аппарата Гольджи есть две разные стороны, каждая из которых играет свою роль.Одна сторона аппарата принимает продукты в виде пузырьков. Эти продукты сортируются через аппарат, а затем они выпускаются с противоположной стороны после переупаковки в новые пузырьки. Если продукт должен быть выведен из клетки, везикула мигрирует на поверхность клетки и сливается с клеточной мембраной, и груз секретируется (рис. 3.11).

Рисунок 3.11. Аппарат Гольджи
(a) Аппарат Гольджи манипулирует продуктами грубого ER, а также производит новые органеллы, называемые лизосомами.Белки и другие продукты ER отправляются в аппарат Гольджи, который организует, модифицирует, упаковывает и маркирует их. Некоторые из этих продуктов транспортируются в другие области клетки, а некоторые выводятся из клетки посредством экзоцитоза. Ферментативные белки упаковываются как новые лизосомы (или упаковываются и отправляются для слияния с существующими лизосомами). (б) Электронная микрофотография аппарата Гольджи.

Лизосомы

Некоторые из белковых продуктов, упаковываемых аппаратом Гольджи, содержат пищеварительные ферменты, которые должны оставаться внутри клетки для использования при расщеплении определенных материалов.Везикулы, содержащие ферменты, высвобождаемые Гольджи, могут образовывать новые лизосомы или сливаться с существующими лизосомами. Лизосома — это органелла, содержащая ферменты, которые расщепляют и переваривают ненужные клеточные компоненты, такие как поврежденная органелла. (Лизосома похожа на разрушительную бригаду, которая сносит старые и ненадежные здания в окрестностях.) Аутофагия («самопоедание») — это процесс переваривания клеткой собственных структур. Лизосомы также важны для расщепления инородного материала.Например, когда определенные клетки иммунной защиты (лейкоциты) фагоцитируют бактерии, бактериальная клетка транспортируется в лизосому и переваривается находящимися внутри ферментами. Как можно догадаться, такие клетки фагоцитарной защиты содержат большое количество лизосом. При определенных обстоятельствах лизосомы выполняют более грандиозную и ужасную функцию. В случае поврежденных или нездоровых клеток лизосомы могут открыться и высвободить свои пищеварительные ферменты в цитоплазму клетки, убивая клетку.Этот механизм «самоуничтожения» называется автолиз и контролирует процесс гибели клеток (механизм, называемый «апоптоз»).

Посмотрите это видео, чтобы узнать о эндомембранной системе, которая включает грубую и гладкую ER и тело Гольджи, а также лизосомы и везикулы. Какова основная роль эндомембранной системы?

Органеллы для производства энергии и детоксикации

Помимо функций, выполняемых эндомембранной системой, клетка выполняет множество других важных функций.Точно так же, как вы должны потреблять питательные вещества, чтобы обеспечить себя энергией, каждая из ваших клеток должна принимать питательные вещества, некоторые из которых превращаются в химическую энергию, которая может использоваться для поддержания биохимических реакций. Еще одна важная функция клетки — детоксикация. Люди поглощают все виды токсинов из окружающей среды, а также производят вредные химические вещества в качестве побочных продуктов клеточных процессов. Клетки, называемые гепатоцитами, в печени выводят многие из этих токсинов.

Митохондрии

A митохондрия (множественное число = митохондрии) представляет собой мембранную органеллу бобовидной формы, которая является «преобразователем энергии» клетки.Митохондрии состоят из внешней двухслойной липидной мембраны, а также дополнительной внутренней двухслойной липидной мембраны (рис. 3.12). Внутренняя мембрана сильно сложена в извилистые структуры с большой площадью поверхности, называемые кристами. Именно вдоль этой внутренней мембраны ряд белков, ферментов и других молекул выполняет биохимические реакции клеточного дыхания. Эти реакции преобразуют энергию, хранящуюся в молекулах питательных веществ (например, глюкозы), в аденозинтрифосфат (АТФ), который обеспечивает клетку полезной клеточной энергией.Клетки постоянно используют АТФ, поэтому митохондрии постоянно работают. Молекулы кислорода необходимы во время клеточного дыхания, поэтому вы должны постоянно вдыхать их. Одной из систем организма, которая использует огромное количество АТФ, является мышечная система, потому что АТФ требуется для поддержания сокращения мышц. В результате мышечные клетки заполнены митохондриями. Нервным клеткам также требуется большое количество АТФ для работы натриево-калиевых насосов. Следовательно, отдельный нейрон будет загружен более чем тысячей митохондрий.С другой стороны, костная клетка, которая не так метаболически активна, может иметь всего пару сотен митохондрий.

Рисунок 3.12. Митохондрия
Митохондрии — это фабрики по преобразованию энергии клетки. (а) Митохондрия состоит из двух отдельных двухслойных липидных мембран. Вдоль внутренней мембраны расположены различные молекулы, которые вместе производят АТФ, главную энергетическую валюту клетки. (б) Электронная микрофотография митохондрий. EM × 236000.(Микрофотография предоставлена ​​Медицинской школой Риджентс Мичиганского университета © 2012)

Пероксисомы

Как и лизосомы, пероксисома представляет собой мембраносвязанную клеточную органеллу, которая в основном содержит ферменты (рис. 3.13). Пероксисомы выполняют несколько различных функций, включая метаболизм липидов и химическую детоксикацию. В отличие от пищеварительных ферментов, содержащихся в лизосомах, ферменты в пероксисомах служат для переноса атомов водорода от различных молекул к кислороду, производя пероксид водорода (H 2 O 2 ).Таким образом, пероксисомы нейтрализуют яды, такие как алкоголь. Чтобы понять важность пероксисом, необходимо понять концепцию активных форм кислорода.

Рисунок 3.13. Пероксисома
Пероксисомы — это связанные с мембраной органеллы, содержащие множество ферментов для детоксикации вредных веществ и метаболизма липидов.

Активные формы кислорода (АФК) , такие как пероксиды и свободные радикалы, являются высокореактивными продуктами многих нормальных клеточных процессов, включая митохондриальные реакции, которые производят АТФ и метаболизм кислорода.Примеры ROS включают гидроксильный радикал ОН, H 2 O 2 и супероксид (O 2 ). Некоторые АФК важны для определенных клеточных функций, таких как клеточные сигнальные процессы и иммунные ответы против чужеродных веществ. Свободные радикалы реактивны, потому что они содержат свободные неспаренные электроны; они могут легко окислять другие молекулы по всей клетке, вызывая клеточное повреждение и даже смерть клетки. Считается, что свободные радикалы играют роль во многих деструктивных процессах в организме, от рака до ишемической болезни сердца.С другой стороны, пероксисомы контролируют реакции, нейтрализующие свободные радикалы. Пероксисомы производят большие количества токсичного H 2 O 2 в процессе, но пероксисомы содержат ферменты, которые превращают H 2 O 2 в воду и кислород. Эти побочные продукты безопасно попадают в цитоплазму. Подобно миниатюрным установкам для очистки сточных вод, пероксисомы нейтрализуют вредные токсины, поэтому они не наносят вред клеткам. Печень — это орган, который в первую очередь отвечает за детоксикацию крови перед ее путешествием по телу, а клетки печени содержат исключительно большое количество пероксисом.Защитные механизмы, такие как детоксикация пероксисомы и некоторых клеточных антиоксидантов, служат для нейтрализации многих из этих молекул. Некоторые витамины и другие вещества, содержащиеся в основном во фруктах и ​​овощах, обладают антиоксидантными свойствами. Антиоксиданты действуют, окисляясь сами, останавливая каскады деструктивных реакций, инициируемых свободными радикалами. Однако иногда АФК накапливаются за пределами возможностей такой защиты. Окислительный стресс — это термин, используемый для описания повреждения клеточных компонентов, вызванного ROS.Из-за своих характерных неспаренных электронов АФК могут запускать цепные реакции, при которых они удаляют электроны из других молекул, которые затем становятся окисленными и реакционноспособными, и делают то же самое с другими молекулами, вызывая цепную реакцию. АФК могут вызвать необратимое повреждение клеточных липидов, белков, углеводов и нуклеиновых кислот. Поврежденная ДНК может привести к генетическим мутациям и даже к раку. Мутация . — это изменение нуклеотидной последовательности в гене в ДНК клетки, потенциально изменяющее белок, кодируемый этим геном.Другие заболевания, которые, как считается, вызываются или обостряются ROS, включают болезнь Альцгеймера, сердечно-сосудистые заболевания, диабет, болезнь Паркинсона, артрит, болезнь Хантингтона и шизофрению, среди многих других. Примечательно, что эти заболевания во многом связаны с возрастом. Многие ученые считают, что окислительный стресс является одним из основных факторов старения.

Цитоскелет

Подобно костному скелету, поддерживающему человеческое тело, цитоскелет помогает клеткам сохранять свою структурную целостность.Цитоскелет представляет собой группу волокнистых белков, которые обеспечивают структурную поддержку клеток, но это только одна из функций цитоскелета. Компоненты цитоскелета также имеют решающее значение для подвижности клеток, размножения клеток и транспортировки веществ внутри клетки. Цитоскелет образует сложную нитевидную сеть по всей клетке, состоящую из трех различных видов волокон на основе белков: микрофиламентов, промежуточных волокон и микротрубочек (рис.14). Самая толстая из трех — это микротрубочка , структурная нить, состоящая из субъединиц белка, называемого тубулином. Микротрубочки поддерживают форму и структуру клеток, помогают сопротивляться сжатию клетки и играют роль в расположении органелл внутри клетки. Микротрубочки также составляют два типа клеточных придатков, важных для движения: реснички и жгутики. Реснички обнаружены на многих клетках тела, включая эпителиальные клетки, выстилающие дыхательные пути дыхательной системы.Реснички движутся ритмично; они постоянно бьются, перемещая отходы, такие как пыль, слизь и бактерии, вверх по дыхательным путям, от легких к рту. Удары ресничек на клетках женских фаллопиевых труб перемещают яйцеклетки из яичника в матку. Флагеллум (множественное число = жгутики) — это придаток больше реснички и специализированный для передвижения клеток. Единственная жгутиковая клетка у человека — это сперматозоид, который должен продвигаться к женским яйцеклеткам.

Рисунок 3.14. Три компонента цитоскелета
Цитоскелет состоит из (а) микротрубочек, (б) микрофиламентов и (в) промежуточных филаментов. Цитоскелет играет важную роль в поддержании формы и структуры клеток, стимулировании клеточного движения и содействии делению клеток.

Очень важная функция микротрубочек — устанавливать пути (что-то вроде железнодорожных путей), по которым генетический материал может тянуться (процесс, требующий АТФ) во время деления клетки, так что каждая новая дочерняя клетка получает соответствующий набор хромосом.Две короткие идентичные структуры микротрубочек, называемые центриолями, находятся рядом с ядром клеток. Центриоль может служить точкой клеточного происхождения для микротрубочек, выходящих наружу в виде ресничек или жгутиков, или может способствовать разделению ДНК во время деления клетки путем формирования митотического веретена (волокна веретена).

Клетка: типы, функции и органеллы

Человек состоит из триллионов клеток — основной единицы жизни на Земле. В этой статье мы объясняем некоторые структуры, обнаруженные в клетках, и описываем некоторые из многих типов клеток, обнаруженных в нашем организме.

Ячейки можно рассматривать как крошечные упаковки, которые содержат крошечные фабрики, склады, транспортные системы и электростанции. Они функционируют сами по себе, создавая свою собственную энергию и самовоспроизводясь — клетка — это наименьшая единица жизни, которая может воспроизводиться.

Однако клетки также взаимодействуют друг с другом и соединяются, образуя сплошное, хорошо склеенное животное. Клетки строят ткани, из которых состоят органы; и органы работают вместе, чтобы поддерживать жизнь в организме.

Роберт Хук впервые открыл клетки в 1665 году.Он дал им свое название, потому что они напоминали Cella (лат. «Маленькие комнаты»), где монахи жили в монастырях.

Различные типы клеток могут выглядеть совершенно по-разному и выполнять очень разные роли в организме.

Например, сперматозоид похож на головастика, яйцеклетка самки имеет сферическую форму, а нервные клетки — это, по сути, тонкие трубочки.

Несмотря на различия, они часто имеют общие структуры; их называют органеллами (мини-органами).Ниже приведены некоторые из наиболее важных:


Упрощенная схема клетки человека.

Ядро

Ядро можно рассматривать как штаб-квартиру клетки. Обычно на клетку приходится одно ядро, но это не всегда так, например, в клетках скелетных мышц их два. Ядро содержит большую часть ДНК клетки (небольшое количество находится в митохондриях, см. Ниже). Ядро посылает сообщения, чтобы сказать клетке расти, делиться или умирать.

Ядро отделено от остальной клетки мембраной, называемой ядерной оболочкой; Ядерные поры в мембране пропускают небольшие молекулы и ионы, в то время как более крупным молекулам необходимы транспортные белки, чтобы помочь им пройти.

Плазменная мембрана

Чтобы каждая клетка оставалась отдельной от своего соседа, она окружена специальной мембраной, известной как плазматическая мембрана. Эта мембрана в основном состоит из фосфолипидов, которые предотвращают попадание веществ на водной основе в клетку. Плазматическая мембрана содержит ряд рецепторов, которые выполняют ряд задач, в том числе:

  • Привратники: Некоторые рецепторы пропускают одни молекулы и останавливают другие.
  • Маркеры: Эти рецепторы действуют как именные значки, информируя иммунную систему о том, что они являются частью организма, а не чужеродными захватчиками.
  • Коммуникаторы: Некоторые рецепторы помогают клетке общаться с другими клетками и окружающей средой.
  • Крепеж: Некоторые рецепторы помогают связывать клетку с ее соседями.

Цитоплазма

Цитоплазма — это внутренняя часть клетки, которая окружает ядро ​​и на 80% состоит из воды; он включает органеллы и желеобразную жидкость, называемую цитозолем. Многие важные реакции, происходящие в клетке, происходят в цитоплазме.

Лизосомы и пероксисомы

И лизосомы, и пероксисомы, по сути, представляют собой мешочки с ферментами. Лизосомы содержат ферменты, которые расщепляют большие молекулы, включая старые части клеток и инородный материал. Пероксисомы содержат ферменты, разрушающие токсичные материалы, включая перекись.

Цитоскелет

Цитоскелет можно рассматривать как каркас клетки. Это помогает ему поддерживать правильную форму. Однако, в отличие от обычных каркасов, цитоскелет гибкий; он играет роль в делении и подвижности клеток — например, в способности некоторых клеток двигаться, например, сперматозоидов.

Цитоскелет также помогает в передаче сигналов в клетке, участвуя в поглощении материала извне клетки (эндоцитоз) и участвуя в перемещении материалов внутри клетки.

Эндоплазматический ретикулум

Эндоплазматический ретикулум (ER) обрабатывает молекулы внутри клетки и помогает транспортировать их к конечному месту назначения. В частности, он синтезирует, сворачивает, модифицирует и транспортирует белки.

ER состоит из удлиненных мешочков, называемых цистернами, которые удерживаются вместе цитоскелетом.Есть два типа: грубая ER и гладкая ER.

Аппарат Гольджи

После того, как молекулы были обработаны ER, они перемещаются в аппарат Гольджи. Аппарат Гольджи иногда считают почтовым отделением ячейки, где предметы упаковываются и маркируются. После того, как материалы уйдут, их можно использовать в ячейке или вынести за пределы ячейки для использования в другом месте.

Митохондрии

Митохондрии, часто называемые электростанцией клетки, помогают превращать энергию пищи, которую мы едим, в энергию, которую клетка может использовать — аденозинтрифосфат (АТФ).Однако митохондрии выполняют ряд других функций, включая хранение кальция и роль в гибели клеток (апоптоз).

Рибосомы

В ядре ДНК транскрибируется в РНК (рибонуклеиновую кислоту), молекулу, подобную ДНК, которая несет то же самое сообщение. Рибосомы считывают РНК и переводят ее в белок, склеивая аминокислоты в порядке, определенном РНК.

Некоторые рибосомы свободно плавают в цитоплазме; другие прикреплены к ER.

Наше тело постоянно заменяет клетки.Клеткам необходимо делиться по ряду причин, включая рост организма и заполнение промежутков, оставленных мертвыми и разрушенными клетками, например, после травмы.

Есть два типа деления клеток: митоз и мейоз.

Митоз

Митоз — это процесс деления большинства клеток в организме. «Родительская» клетка делится на две «дочерние» клетки.

Обе дочерние клетки имеют те же хромосомы, что и друг друга, и родительская. Их называют диплоидными, потому что они имеют две полные копии хромосом.

Мейоз

Мейоз создает половые клетки, такие как мужские сперматозоиды и женские яйцеклетки. При мейозе небольшая часть каждой хромосомы отрывается и прикрепляется к другой хромосоме; это называется генетической рекомбинацией.

Это означает, что каждая из новых клеток имеет уникальный набор генетической информации. Именно этот процесс позволяет происходить генетическому разнообразию.

Итак, вкратце, митоз помогает нам расти, а мейоз гарантирует, что все мы уникальны.

Если учесть сложность человеческого тела, неудивительно, что существуют сотни различных типов клеток.Ниже представлена ​​небольшая подборка типов клеток человека:

Стволовые клетки

Стволовые клетки — это клетки, которым еще предстоит выбрать, какими они станут. Некоторые дифференцируются, чтобы стать клетками определенного типа, а другие делятся, чтобы произвести больше стволовых клеток. Они обнаруживаются как в эмбрионе, так и в некоторых тканях взрослого человека, например, в костном мозге.

Костные клетки

Существует по крайней мере три основных типа костных клеток:

  • Остеокласты, которые растворяют кость.
  • Остеобласты, образующие новую кость.
  • Остеоциты, которые окружены костью и помогают общаться с другими костными клетками.

Клетки крови

Есть три основных типа клеток крови:

  • красных кровяных телец, которые переносят кислород по всему телу
  • лейкоцитов, которые являются частью иммунной системы
  • тромбоцитов, которые помогают свертыванию крови для предотвращения кровопотери после травмы

Мышечные клетки

Мышечные клетки, также называемые миоцитами, представляют собой длинные трубчатые клетки.Мышечные клетки важны для огромного количества функций, включая движение, поддержку и внутренние функции, такие как перистальтика — движение пищи по кишечнику.

Сперматозоиды

Эти клетки в форме головастиков — самые маленькие в организме человека.

Они подвижны, что означает, что они могут двигаться. Они достигают этого движения с помощью своего хвоста (жгутика), который заполнен митохондриями, дающими энергию.

Сперматозоиды не могут делиться; они несут только одну копию каждой хромосомы (гаплоид), в отличие от большинства клеток, которые несут две копии (диплоид).

Женская яйцеклетка

По сравнению со сперматозоидом, женская яйцеклетка является гигантской; это самая большая клетка человека. Яйцеклетка также гаплоидна, так что ДНК сперматозоидов и яйцеклетки могут объединяться, чтобы создать диплоидную клетку.

Жировые клетки

Жировые клетки также называются адипоцитами и являются основным компонентом жировой ткани. В них хранятся жиры, называемые триглицеридами, которые при необходимости можно использовать в качестве энергии. Когда триглицериды израсходованы, жировые клетки сокращаются.Адипоциты также производят некоторые гормоны.

Нервные клетки

Нервные клетки — это коммуникационная система организма. Также называемые нейронами, они состоят из двух основных частей — тела клетки и нервных отростков. Центральное тело содержит ядро ​​и другие органеллы, а нервные отростки (аксоны или дендриты) работают как длинные пальцы, неся сообщения в разные стороны. Некоторые из этих аксонов могут иметь длину более 1 метра.

Клетки настолько же интересны, насколько и разнообразны. В каком-то смысле они являются автономными городами, которые функционируют самостоятельно, производя собственную энергию и белки; в другом смысле они являются частью огромной сети клеток, которая создает ткани, органы и нас.

Структура и функции ячейки


Изображение: «Стволовая клетка» авторства
PublicDomainPictures. Лицензия: Public Domain


Определение ячейки

Клетка как биологическая организационная единица — наименьший базовый элемент всех организмов . Он автономен и выполняет основные важные функции в обмене веществ, росте, движении, воспроизводстве и наследственности.

Эукариотические и прокариотические клетки в сравнении

Эукариотические клетки имеют размер 10–100 мкм и обладают ядром, содержащим ДНК нескольких хромосом.В дополнение к экзонам (кодирующая ДНК) ДНК состоит из множества интронов (некодирующих генов), которые удаляются такими процессами, как сплайсинг, посредством биосинтеза белка.

Цитоплазма сильно расчленена и богата клеточными органеллами. Рибосомы имеют молекулярную массу 80S для субъединиц 60S и 40S (величина массы как константа центрифугирования Сведберга). Дыхательная цепь проходит в митохондриях. Примерами эукариот являются клетки грибов и животных (от клеток червя до клеток человека).

Прокариотическая клетка , однако, имеет размер всего 1–10 мкм и содержит ядерный эквивалент (нуклеоид) вместо ядра. Эта «ядро-подобная» плотно упакованная молекула расположена в цитоплазме и включает ДНК, которая включает только одну хромосому и никаких интронов.

Кроме того, может присутствовать плазмида (кольцевая внехромосомная ДНК), которая играет особую роль в развитии устойчивых к антибиотикам бактерий. Цитоплазма менее разделена на части, и дыхательная цепь специфически расположена в цитоплазматической мембране.

В то время как митохондрии, аппарат Гольджи и эндоплазматический ретикулум отсутствуют, рибосомы имеют молекулярную массу 70S для 50S и 30S субъединиц. Бактерии, такие как Escherichia coli , принадлежат к группе прокариот .

Эти различия — общие темы экзаменов по биологии и биохимии.

Структура и функция клеточной мембраны

Клеточная мембрана, также называемая плазмалеммой, окружает цитоплазму и служит в качестве границы между внутри- и внеклеточным пространством .Он состоит из фосфолипидного бислоя , причем гидрофильные части фосфолипидов направлены во внутри- и внеклеточное пространство. Гидрофобные части расположены в центре мембраны.

Изображение: двухслойный фосфолипид. Автор philschatz, лицензия: CC BY 4.0

Периферический гликокаликс состоит из сахарных цепей (полисахаридов), которые ковалентно связаны с мембранными белками (гликопротеинами) и липидами мембран (гликолипидами).Гликокаликс индивидуален и зависит от типа клеток, это означает, например, что он определяет характеристики группы крови эритроцитов.

Благодаря своей текучести клеточная мембрана одновременно стабильна и гибка. Его текучесть может меняться в зависимости от температуры и липидного состава. Мембрана полупроницаемая, (также называемая селективной проницаемостью), что означает, что она проницаема для низкомолекулярных веществ, таких как вода, которые способны осмотически диффундировать .Высокомолекулярные вещества, такие как белки, требуют специальных транспортных систем для прохождения через клеточную мембрану.

Функциональность клеточной мембраны решающим образом определяется ее мембранными белками , которые включают: ионные каналы, молекулы клеточной адгезии, аквапорины, мембранные насосы, белки-носители и рецепторные белки.

Изображение: клеточная мембрана. Автор: philschatz, лицензия: CC BY 2.0

Строение и функции ядра

Ядро клетки (ядро) содержит ДНК, упакованную в хромосомы, и может различаться по размеру и структуре в зависимости от ее активности .Кариоплазма отделена от цитоплазмы пористой ядерной мембраной, кариолеммой.

Ядерная мембрана состоит из внешней и внутренней ядерной мембраны и пространства между ними, которое является перинуклеарной цистерной. Наружная ядерная мембрана сливается с эндоплазматическим ретикулумом и занята рибосомами. Внутренняя ядерная мембрана находится внутри войлочной ядерной пластинки (lamina nucleis), которая образована слоем промежуточных филаментов размером 30–100 нм.

Около 1000–4000 ядерных пор обеспечивают обмен веществами между цитоплазмой и кариоплазмой, причем молекулы <5 кДа свободно диффундируют, а более крупные молекулы, такие как молекулы белков, проходят через связывание с рецептором.

Ядро содержит небольшой сферический ядрышко (ядрышко), из которого происходит рибосомная РНК . Транскрипция, предпосылка для трансляции, и репликация, предпосылка митоза, также контролируются ядром.

Изображение: Ядро. Автор philschatz, лицензия: CC BY 4.0

Функции цитоплазмы

Цитоплазма, также называемая цитозолем, ограничена клеточной мембраной и представляет собой жидкую матрицу каждой клетки. Цитоскелет, клеточные органеллы и клеточные включения встроены в цитоплазму.

В процессе биосинтеза белков цитоплазмы ионные токи, а также транспорт везикул происходят вокруг аппарата Гольджи, эндоплазматического ретикулума и клеточной мембраны.Он составляет около 50% объема клетки и имеет pH 7,2.

Классификация клеточных органелл

Органеллы клеток встроены в цитоплазму и делятся на:

  • Мембранные органеллы (грубая и гладкая эндоплазматическая сеть, аппарат Гольджи, митохондрии, лизосомы, пероксисомы)
  • Органеллы, не ограниченные мембраной, такие как рибосомы или центриоли

Структура и функции отдельных клеточных органелл

Изображение: Прототип клетки человека.Автор philschatz, лицензия: CC BY 4.0

Эндоплазматический ретикулум (ER)

Эндоплазматический ретикулум относится к трубчатой ​​мембранной системе. Грубый эндоплазматический ретикулум занят рибосомами и облегчает биосинтез белков эндосом, трансмембранных белков или секреторных гранул. Гладкая эндоплазматическая сеть не занята рибосомами и выполняет следующие разнообразные функции:

  • Накапливает и регулирует ионы кальция в цитоплазме поперечно-полосатых мышечных клеток (здесь называемых саркоплазматическим ретикулумом)
  • Синтез липидных и стероидных гормонов
  • Детоксикация эндогенных и чужеродных веществ в гепатоцитах

Изображение: Эндоплазматический ретикулум (ER).Автор philschatz, лицензия: CC BY 4.0

Аппарат Гольджи

Аппарат Гольджи состоит из диктиосом (стопка из 4-10 покрытых мембраной дискообразных полостей) и имеет выпуклую цис-область и вогнутую транс-область , которые обращены друг к другу. Белки, продуцируемые в грубом эндоплазматическом ретикулуме, достигают цис-Гольджи посредством транспортных везикул, после чего они затем модифицируются и обрабатываются (фосфорилирование, сульфатирование, гликозилирование) в аппарате Гольджи и сортируются по месту назначения.

На транс-сайте , происходит упаковка секреторных гранул или везикул. Ретроградный транспорт (транс в цис) может быть обнаружен для ферментов, которые необходимы в эндоплазматическом ретикулуме.

Изображение: Аппарат Гольджи. Автор philschatz, лицензия: CC BY 4.0

Митохондрии

Эти «электростанции» клетки снабжают клетки энергией посредством окислительного фосфорилирования и являются общей темой при обследованиях. За исключением зрелых эритроцитов, митохондрии обнаруживаются во всех клетках.

Митохондрии имеют 2 мембраны, а также межмембранное пространство между ними. Гладкая внешняя мембрана содержит порины, через которые могут проходить молекулы <10 кДа, в то время как внутренняя мембрана в значительной степени сложена, чтобы увеличить площадь поверхности. Он ограничивает матричное пространство и несет ферменты дыхательной цепи и синтеза АТФ.

В основном, существует 2 различных типа внутренней мембраны из-за складывания:

  1. Тип Crista: в метаболически активных клетках, таких как кардиомиоциты
  2. Тип канальцев: в стероид-продуцирующих клетках

Ферменты β-окисления и ферменты цикла лимонной кислоты расположены в матричном пространстве .

Митохондрии полуавтономные , поскольку они имеют собственную кольцевую ДНК (мтДНК). Согласно эндосимбиотической теории , митохондрии являются филогенетическими прокариотами, которые включаются в эукариоты в процессе симбиоза.

Эта гипотеза дополнительно подтверждается тем фактом, что митохондрии обладают 70S рибосомами (50S и 30S субъединицы), а также участием бактериального липидного кардиолипина в развитии внутренней мембраны.

Изображение: Митохондрия.Автор philschatz, лицензия: CC BY 4.0

Лизосомы

Кислый pH (4,5–5), а также высокое содержание кислых гидролаз, протеаз, липаз, ферментов эстеразы, эластаз, коллагеназ и кислых фосфатаз, среди прочего, являются характеристиками лизосом.

Их основные особенности — ауто- и гетерофагия, а также деградация эндогенных и чужеродных веществ. Когда первичная лизосома (еще неактивная) сливается с разрушающимися веществами, она называется вторичной лизосомой.

Пероксисомы

Изображение: Пероксисома. Автор philschatz, лицензия: CC BY 4.0

Пероксисомы в основном расположены в печени и почках и содержат ферменты пероксидазу и каталазу, так как они служат для разложения жирных кислот путем окисления . Во время этого процесса образуется побочный продукт — перекись водорода, которая может привести к повреждению клеток. Следовательно, он должен разлагаться до воды и кислорода с помощью каталазы.

Рибосомы

Рибосомы эукариот 80S состоят из 2 субъединиц (60S и 40S) , состоящих из одной трети белков и двух третей рРНК.Они могут быть обнаружены в цитозоле и помогают в синтезе цитоплазматических и ядерных белков или могут быть связаны с мембраной в грубом эндоплазматическом ретикулуме, чтобы обеспечить синтез лизосомных белков, а также обеспечить экспорт белков или мембранных белков.

центриолей

Эти клеточные органеллы имеют цилиндрическую форму и состоят из микротрубочек. Одна пара центриолей расположена перпендикулярно другой, образуя центросому. Центросома является местом формирования микротрубочек и также называется MTOC (центр организации микротрубочек).

Ячеистые включения

Клеточные включения — это побочные продукты метаболизма, накопленные питательные вещества, скопления экзогенных или эндогенных веществ, которые находятся в свободном состоянии в цитоплазме. К ним относятся частицы гликогена, капли внутриклеточного жира, пигментированные клеточные структуры (гемосидерин, липофусцин, углеродная пыль) и вирусные частицы.

В случае некоторых заболеваний, таких как гемохроматоз или болезнь накопления гликогена, клеточные включения присутствуют в патологической степени.

Компоненты и функции цитоскелета

Цитоскелет расположен в цитоплазме и отвечает за стабилизацию , внутриклеточный транспорт веществ, а также за миграцию (лат. Migrare = поход) клетки. Эта трехмерная сеть создается микротрубочками, промежуточными филаментами и актиновыми филаментами. Эти компоненты подвергаются постоянной сборке и разборке, так называемой полимеризации и деполимеризации.

Совет к экзамену : Компоненты и функции цитоскелета являются общими темами обследований.

Изображение: 3 компонента цитоскелета. Автор philschatz, лицензия: CC BY 4.0

Актиновые филаменты (F-актин)

Это наименьший компонент цитоскелета , имеющий диаметр 7 нм и также называемый микрофиламентами.

F-актин — это , состоящий из 2 цепей актина, спирально намотанных друг на друга, которые образуются в результате полимеризации многих глобулярных мономеров актина (G-актина). Во многих случаях — но не всегда — актиновые филаменты связаны с миозином, моторным белком актиновой системы.Они составляют основу мускульного механизма скольжения филаментов.

Кроме того, актиновые филаменты также выполняют стабилизирующие функции, поскольку они формируют базовую структуру микроворсинок или точку закрепления десмосом.

Промежуточные волокна

Имея диаметр 10 нм, они образуют пассивную опорную структуру ячейки. Экспрессия промежуточных филаментов варьируется в зависимости от типа ткани, поэтому с их помощью можно определить происхождение злокачественной опухоли, например:

Промежуточная нить Тип ткани Функция
Цитокератин Эпителия Механическая защита
Виментин Ткань мезенхимального происхождения, например, хрящевая или соединительная ткань Не полностью известно
Desmin Мышечная ткань Сцепление миофибрилл
Глиальный фибриллярно-кислотный белок (GFAP) Астроциты ЦНС Структура
Нейрофиламент Нервные клетки Строение аксонов

Микротрубочки

При диаметре 25 нм они являются крупнейшими компонентами цитоскелета и происходят из центросомы (см. Выше).Они состоят из димеров α- и β-тубулина и по внешнему виду похожи на полый цилиндр, один конец которого заряжен отрицательно, а другой — положительно.

Микротрубочки определяют расположение клеточных органелл внутри клетки и образуют сеть прямого массопереноса . Они также являются основными структурами киноцилий и аппарата веретена во время митоза и мейоза.

Структура и функции контактов ячейки

Исходя из функций 3 типов ячеек, контакты можно классифицировать как:

  1. Коммуникационные контакты
  2. Адгезионные контакты
  3. Барьерные контакты как герметичные соединения

Контакты связи

Они включают щелевых контактов, также называемых нексусами (важные вопросы теста).

Они состоят из трансмембранных белков, называемых коннексином . Шесть коннексинов образуют коннексон и 2 коннексона затем образуют нексус . Они обеспечивают электрическую и метаболическую связь между 2 соседними клетками . Например, особенно большое количество щелевых контактов обнаруживается во вставочном диске миокарда.

Адгезионные / адгезионные контакты

Они служат в качестве механических якорей, а состоит из 3 основных компонентов: трансмембранных белков, белков бляшек и цитоскелета .Десмосомы можно найти между соседними клетками как межклеточный контакт. Гемидесмосомы, с другой стороны, связывают клетку с внеклеточным матриксом, создавая контакт между клеткой и матрицей.

В следующей таблице представлен обзор различных типов адгезионных контактов , поскольку они актуальны для исследования в гистологии и биохимии.

Тип Возникновение Нити Молекулы адгезии Белок зубного налета
Точечные десмосомы = Macula adhaerens Миокард, эпителий Промежуточные волокна Кадгерины (десмоколлин, десмоглеин) Плакоглобин, Десмоплакин
Точечные десмосомы = Puncta adhaerens Вездесущий Актиновые нити Кадгерины
Пояс десмосом = Zonula adhaerens Кубический и призматический эпителий Актиновые нити Кадгерины (обычно E-кадгерины) Α-актинин, винкулин, катенин
Полоска десмосом = Fascia adhaerens Миокард интеркалированный диск Актиновые нити Интегрин Талин, Винкулин, α-Актинин
Гемидесмосомы Между эпителиальной клеткой и базальной пластиной Промежуточные волокна Интегрин, Коллаген Плектин, Дистонин

Барьерные / замыкающие контакты

Они называются плотными контактами, zonula occludens, и развиваются в результате слияния внешней мембраны соседних клеток .Таким образом, внутриклеточное пространство имеет форму пояса и охватывает эту область, так что параклеточный поток молекул затруднен (диффузионный барьер). В этой области окклюдин и клаудин являются важными трансмембранными белками.

Соединительный комплекс

Этот адгезивный комплекс служит барьером селективной проницаемости и, если смотреть на от апикального к базальному слою, состоит из zonula occludens, zonula adhaerens и macula adhaerens.

Сотовая связь

Гормоны и трансдукция

Гормоны — это химические посредники, которые передают информацию от одной клетки к другой.Эти соединения вырабатываются эндокринными железами, такими как гипофиз и щитовидная железа.

Обзор важных эндокринных органов и гормонов

Эндокринные органы Гормоны
Гипоталамус Антидиуретический гормон (АДГ)
Шишковидная железа Мелатонин
Гипофиз Адренокортикотропный гормон (АКТГ)
Щитовидная железа Тироксин
Паращитовидная железа Гормон паращитовидной железы
Тимус Тимозин
Надпочечники Адреналин, кортикостероиды
Поджелудочная железа Инсулин
Тесты Тестостерон
Яичники Эстроген

Эндокринные органы вырабатывают гормоны в ответ на сигналы из внешней среды, такие как боль, давление, тепло и свет.Гормоны также могут вырабатываться в ответ на сигналы изнутри тела, такие как сигналы голода.

  • После того, как гормоны произведены, они секретируются в кровь, которая транспортирует их к клеткам в других частях тела, где они оказывают свое действие.
  • Клетки-мишени для этих гормонов имеют рецепторы, которые позволяют им реагировать на гормон. Эти рецепторы состоят из белков и обычно расположены в плазматической мембране, которая находится на поверхности клетки, хотя некоторые также могут быть обнаружены внутри клетки.
  • Когда гормон достигает клетки со своим рецептором , он связывается с рецептором и вызывает конформационные изменения. Это означает, что рецептор меняет свою форму и ограничивает способность связываться с другим гормоном.

Конформационное изменение также запускает серию реакций внутри клетки, которые известны как каскады трансдукции . В зависимости от гормона и конкретной клетки с его рецептором, эта цепь событий может включать в себя высвобождение ферментов, которые работают вместе для генерации ответов.

Действие гормонов на клетки-мишени

Эти ответы варьируются от деления клеток, подвижности клеток и гибели клеток . Они также могут включать изменения в ионных каналах, которые разрешают или ограничивают перемещение определенных молекул в клетки.

Другие эффекты передачи сигнала гормона включают абсорбцию глюкозы из крови (инсулин), повышение артериального давления и частоты сердечных сокращений (адреналин) и регулирование менструального цикла (эстроген и прогестерон).

Сигнальная трансдукция позволяет клетке контролировать свою реакцию на гормон и окружающую среду. Многоступенчатое действие гормона также усиливает его.

Передача сигналов , таким образом, имеет решающее значение для организмов с множеством клеток, поскольку позволяет им координировать свою деятельность и одновременно отвечать на различные сигналы.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *