Фонетический разбор слова вилка показывает как оно произносится (транскрипция и ударение), сколько букв, звуков и слогов содержит.
Разбор по слогам, ударение, транскрипция
Слово можно разделить на 2 слога: вил-ка
Ударение падает на первый слог ви́лка.
Транскрипция слова [в’илка] — это графическая запись звучания.
Звуко-буквенный разбор
Звуковой анализ показывает количество букв и звуков, он не влияет на произношение:
- в — [в’] — согласный, звонкий парный, мягкий парный
- и — [и] — гласный, ударный
- л — [л] — согласный, звонкий непарный, сонорный, твёрдый парный
- к — [к] — согласный, глухой парный, твёрдый парный
- а — [а] — гласный, безударный
5 букв, 5 звуков
Звуко-буквенный разбор слова вилка по звукам и буквам может быть включён в программу обучения 1, 2, 3, 4, 5 или 6 класса.
Цветовая схема
Звуковая схема слова вилка (она же цветовая):
Схемы слов 1 класс в картинках цвета
Картинки схем для составления слов для учеников 1 класса можно бесплатно скачать и распечатать из этой статьи. Схемы слов в картинках помогут дошкольникам и ученикам начальных классов лучше различать гласные и согласные звуки.
Составь схемы слов.
Схема слова каша.
Мягкий согласный обозначается зеленым цветом, синим — твердый согласный, а гласные — красным.
Картинки для составления схем слов в 1 класс.
Картинки со схемами слов.
В подготовительную группу.
Для самостоятельного заполнения.
Для дошкольника.
Схема с подписями.
Соедини слова с подходящими к ним схемами. Обрати внимание на ударение.
Выбери схему к слову ветка.
Гласные и согласные звуки в словах.
Игра «Найди ошибки».
Для 1 класса.
Соотнесите схемы и слова.
Как правильно составить звуковую схему слова
в 1 классе
Выполняя звуко-буквенный разбор, используют цвета:
красный – для обозначения гласных звуков,
синий — для обозначения твёрдых согласных,
зелёный — для обозначения мягких согласных.
В русском языке 33 буквы:
10 букв, обозначающих гласные звуки:
А, О, У, Ы, Э – обозначают твёрдость впереди стоящих согласных;
Я, Е, Ё, И, Ю – обозначают мягкость впереди стоящих согласных;
(буквы Я, Е, Ё, Ю – звуков не обозначают).
Гласные ( Я Е Ё Ю – йотированные:
[й’а], [й’э], [й’о], [й’у].
Они обозначают 2 звука:
- в начале слова — яма – [ й’ а м а ];
- если стоят после мягкого или твёрдого знака —
съел — [с й’ э л] льёт — [ л’ й о т ];
- стоят после гласного звука — поют — [ п а й’ у т ].
В остальных случаях Я, Е, Ё, Ю обозначают 1 звук (соответственно: я – [а], е – [э], ё – [о], ю – [у]).
Например: мяч — [м’ а ч’ ],
лён — [ л’ о н ], люк — [ л’ у к ]).
21 буква, обозначающая согласные звуки:
Б, В, Г, Д, Ж, 3, Й, К, Л, М, Н, П, Р, С, Т, Ф, X, Ц, Ч, Ш, Щ.
2 буквы:
Ъ и Ь – звуков не обозначают.
Всегда твердые согласные: [Ж], [Ш], [Ц] — жир – [ ж ы р ],
цель- [ ц э л’ ],
Всегда мягкие: [Ч]. [Щ], [Й]. Чай — [ ч’ а й’ ],
щавель – [щ’ а в э л’ ].
Все остальные согласные звуки могут быть как твёрдыми, так и мягкими.
Термины и группы фонетики
Наука далеко зашла в изучении русского языка. Отдельный упор был сделан на раздел фонетики — изучения письменного отображения звуков. Специалистами была собрана статистика звучности человеческого языка:
- В среднем человек за одни сутки производит пару сотен звуков.
- Чтобы выразить свои мысли, используют больше 50 звуков.
- При этом на письме используется всего лишь 33 их обозначения.
Два главных инструмента фонетики — буквы и звуки. Важно знать особенности каждой группы и их отличия:
- Элемент, который используют только для письменного отображения и чтения — буква.
- Элемент, который только произносят и слушают — звук.
Сложность разбора состоит в том, что произношение слова может значительно отличаться от его написания. Например, количество одной из групп элементов (букв или звуков) может быть больше/меньше другой. В ином случае количество может оставаться одинаковым, но письменное отображение будет не совпадать со слышимым. Обусловливается это правилами орфографии и орфоэпии.
Однако, фонетика включает в себя только аспекты произношения. К ним относятся:
- звук;
- буква;
- ударение;
- слог.
Все вышеуказанные термины имеют индивидуальные свойства, но вместе они составляют характеристику звучания слова — фонетический анализ.
Особенности разбора
Самая распространённая ситуация, при которой допускают ошибки, — когда звучание и письменное обозначение не совпадают с друг другом. Если за правильность написания отвечает орфография, то фонетика регулирует правила произношения слов. Чтобы успешно завершить звуковой разбор, рекомендуется учитывать несколько советов:
- Точно установить все особенности звучания слова.
- Для каждой буквы составить свою транскрипцию.
- Ни при каких условиях не подгонять звуки и буквы под друг друга. Например, ши [ шы ] — машин.
- После завершения ещё раз чётко и тщательно произнести слово вслух, проверяя каждую единицу речи.
Для фонетического разбора существует специальный алгоритм. Некоторая информация обязательна для заучивания, остальное рекомендуется записать в виде памятки. Главные правила в фонетическом анализе в рамках школьной программы:
- Звонкие согласные на конце слова становятся глухими. Например, дуб [п].
- Твёрдые согласные становятся мягкими, если после них стоят мягкие согласные. Например, здесь [з’д’эс’]. В основном это происходит с буквами: з/с, д/т, н.
- Звонкие согласные становятся глухими, если после них стоит глухой согласный. Например, редко [ р ‘ этк а] .
- Глухие преображаются в звонкие, если стоят перед такими же звонкими. Например, сдать [ здат ‘] образец.
Для студентов высших учебных заведений филологического профиля правил несколько больше. Они дополнительно изучают:
- аккомодацию;
- диссимиляцию;
- редукцию.
Эти три пункта изучают для более глубоко понимания фонетики и того, как преобразуются нормы речи. Также они помогут студентам, которые желают в будущем преподавать, понятнее и быстрее объяснять сложные темы и разбирать популярные ошибки уже своих учеников.
Классификация звуков
В свою очередь, звуки тоже сортируют на две группы. Их главное отличие от друг друга — анатомия образования. Какие существуют классы:
- Согласные. При их произношении человек сталкивается с препятствиями. Преградой выступает один орган или целая их группа (губы, зубы или язык).
- Гласные. При помощи гортани и отдельных частей ротовой полости воздух без каких-либо помех выходит из лёгких — так образуется гласный звук.
Чтобы понять остальные различия, необходимо детально разобрать каждое понятие.
Виды гласных
Всего в русском языке существует 6 гласных звуков (о, и, а, э, ы, у), но для обозначения их на письме используют до 10 букв. Связано это с тем, что некоторые из гласных могут иметь несколько буквенных обозначений одновременно. Например, есть полугласная «й». Стоит учитывать, что в школьной программе она будет обозначаться согласным звуком. Также её предназначение — отображение дополнительных гласных (я, е/ё, ю). В фонетическом разборе это будет выглядеть:
- я — [ йа ] ;
- е — [ йэ ] ;
- ю — [ йу ] ;
- ё — [ йо ] .
Однако эти гласные не всегда будут отображаться в схеме двумя буквенными элементами. Правило сохраняется только в некоторых условиях:
- В начале слова. (Яна, январь).
- После гласных звуков (тихая гавань, молодая мама, скоростной поезд).
- После твёрдого/мягкого знака (въехать в дом).
В противном случае эти гласные будут смягчать, но двойного звучания вместе с «й» не будут давать (ребята, ветер).
Все гласные подразделяют ещё на две подгруппы, в зависимости от звука, стоящего перед ними. К ним относят:
- Если стоит твёрдый согласный (чашка, сорока). В эту группу входят: а/о, у, э, ы.
- Если впереди указан мягкий согласный (пила, перо). Сюда включают: я, е/ё, и/е.
Каждая гласная имеет и свой личный характеризующий признак — ударение. Его в обязательном порядке требуется указать в фонетическом разборе. По этому признаку гласный может быть либо ударным, либо безударным. Ударный звук пишется и произносится всегда одинаково (Москва — под ударением «а»).
Группы согласных
Согласных звуков значительно больше, чем гласных. Всего их насчитывается 20. Они тоже делятся на группы по определённым признакам. При этом согласные могут одновременно значиться в нескольких группах, то есть иметь несколько признаков:
- Звонкие: б, в, г, д, ж, з, р, л, н, м.
- Глухие: п, ф, к, т, ш, с, х, ц, ч, щ.
- Непарные, но они делятся на ещё 2 подгруппы. Звонкие: р, л, н, м. Глухие: х, ц, ч, щ.
- Шипящие: ж, ч, ш, щ. Все остальные можно отнести к мягким или твёрдым.
- Твёрдые: ж, ш, ц. Их мягкость не меняется в любых ситуациях.
- Также неизменные мягкие: й, ч, щ.
При произношении могут возникнуть проблемы с правильным определением звонкости, так как и глухие, и звонкие имеют одну и ту же артикуляцию (кактус). Есть два метода решения задачи парных согласных:
- Разделить алфавит на две части. Вначале будут идти звонкие согласные, после — глухие.
- Изучить правила позиций согласных, при которых они в обязательном порядке становятся звонкими/глухими.
Схематическая модель
При фонетическом разборе составляется схематическое отображение слова. На деле это схема в виде цветовых карточек разных форм. Звуковой анализ слова и схема для дошкольников — пример, который способствует созданию образа для восприятия и понимания деталей структуры слова. Форм бывает всего две — прямоугольная или квадратная. А вот цветного отличия множество:
Звуковые схемы слов в 1 классе (карточки) имеют свою точную последовательность в цвете и формах. Если правильно пользоваться этим методом, обучение пройдёт быстро и легко.
Используют звуковой анализ слова в 1 классе (схемы и разбор) и дошкольном образовании, как вспомогательный инструмент при обучении чтению. Преподаватель сможет не только рассказать о каждой единице речи отдельно, но научит собирать их воедино и снова разделять. К тому же модель выделяет разницу в произношении между согласными и гласными звуками.
Алгоритм фонетического разбора
Когда все термины изучены, единицы речи отсортированы по группам, можно переходить непосредственно к самому фонетическому разбору. Все результаты анализа обязательно записывают. По внешнему виду он похож на составление транскрипции при чтении и произношении слов из иностранных языков.
Чтобы провести разбор правильно, необходимо следовать алгоритму. Порядок действий:
- Записать выбранное слово по правилам орфографии.
- Выделить основные части — слоги. Например, азбука — аз-бу-ка.
- Установить, какая из гласных является ударной. Лыжа — ударный звук «ы».
- Составить схему (транскрипцию) звуков. Играть — [играт’].
- Вывести подсчёт количества букв и звуков в слове. Елена — 5 букв, 6 звуков.
Разбор можно записывать не только по пунктам, но и в виде столбика. В таком случае каждая буква выписывается в отдельной строке и ей даётся своя характеристика.
Деление на слоги
Одним из пунктов разбора является поделить слово на слоги. Слоги — это самая маленькая единица строения речи. Существует небольшая хитрость: «чтобы сосчитать количество слогов в слове, можно просто посчитать гласные звуки». Например, в слове «астр» всего 1 слог.
Однако деление всё равно подчиняется строгим правилам, которые не всегда согласуются с требованиями переноса слова.
Первоначально важно знать, что слоги имеют несколько разновидностей:
- Открытый — если заканчивается на гласный звук.
- Закрытый — если в конце согласный (тетрадь).
- Прикрытый, если в начале стоит согласный звук (ки-слый). Следовательно, если гласный — неприкрытый (окно).
Помимо видов, есть и другие правила разбора. Что необходимо знать о слогах:
- В составе слога обязательно должно быть по одному гласному и согласному звуку. Например, роза (ро-за). При этом отдельные даже важные части не могут быть полноценными слогами. Например, приставка не является слогом.
- В основном слоги начинаются с согласного, а после него должен идти гласный. Сам по себе согласный звук не может составлять слог. Например, в слове мир — один слог, а не два.
- Если в слове имеется мягкий/твёрдый знак, он входит в состав предыдущего слога. Например, подъ-езд. К тому же твёрдый/мягкий знак не может быть отдельным слогом. Например, семь — 1 слог, мальчик — 2 слога.
- Несколько букв, которые создают собой один звук, нельзя разделить на разные слоги. Например, кружиться — кру-жи-ться .
Как и любая другая наука, фонетика постоянно развивается. Поэтому правила фонетического разбора могут со временем изменяться. Последние изменения в анализе:
- Двойные буквы в слове по старым правилам распределялись по разным слогам. Сегодня их принято записывать в слог, который они начинают. Например, кла-ссный.
- По нововведениям глухие согласные записывают в следующий за ними слог (точка: то-чка). В это время звонкие остаются в предшествующем слоге (клубника: клуб-ни-ка).
Знание фонетики не только даёт орфографическую грамотность. Эта наука способствует развитию памяти и фонетического слуха, учит правильно и красиво произносить те или иные звуки, понимая детали их состава. А если выполнить анализ самостоятельно не получается, можно сделать звуковой разбор слова онлайн.
Учимся составлять звуковую схему слова
Уважаемые родители, для ребят, которые идут в 1 класс, будут очень полезны занятия по составлению звуковой схемы слова.
Давайте попробуем разобраться, как правильно составить звуковую схему слова или звуковую модель слова. Данный вид работы мы также можем назвать звуко-буквенным разбором слова или фонетическим разбором.
Фонетика – раздел науки о языке, в котором изучаются звуки языка, ударение, слог.
Звуки, которые произносит человек, мы называем звуками речи. Звуки речи образуются в речевом аппарате при выдыхании воздуха. Речевой аппарат – это гортань с голосовыми связками, ротовая и носовая полости, язык, губы, зубы, нёбо.
Гласные звуки состоят только из голоса, выдыхаемый воздух проходит через рот свободно, не встречая преграду. Гласные звуки можно долго тянуть, петь.
В русском языке гласных звуков шесть: [а], [о], [у], [э], [ы], [и]. Гласные звуки бывают ударными и безударными.
Гласные звуки мы будем обозначать красным цветом ( условные обозначения для звуков я взяла из программы “Школа России”).
Предлагаем большой выбор школьных рюкзаков для девочек и мальчиков. В нашем магазине вы можете купить школьный рюкзакдля первоклассников и для подростков, а также школьные сумки и мешки для обуви.
Когда мы произносим согласные звуки, воздух встречает преграду (губы, зубы, язык). Одни согласные состоят только из шума – это глухие согласные. Другие – из голоса и шума. Это звонкие согласные.
Согласные также делятся на твёрдые и мягкие.
Твёрдые согласные обозначают синим цветом, мягкие – зелёным.
По программе “Школа России” слияние гласного звука с согласным мы обозначаем прямоугольником, разделённым наискосок прямой линией, где снизу закрашиваем согласный, а сверху гласный.
Сделайте из цветного картона или бумаги карточки, чтобы составлять слова. Также понадобятся карточки со знаком ударения и разделительной чертой.
Можно рисовать схемы в тетради в крупную клеточку. Ещё лучше совмещать оба вида работы.
Начинайте работу с простых слов – односложных или двусложных.
Итак, вы сделали карточки и готовы к занятию.
Подумайте, как заинтересовать ребёнка.
Может вы научите составлять слова куклу Машу или любимого зайку?
Или будете отгадывать загадки и составлять схему слова-отгадки?
А может быть слово (карточка или картинка) спрятаны и вы поиграете в игру “холодно-горячо”?
Очень хорошо, если вы придумали что-то интересное и появился стимул к работе.
Фрагмент занятия.
Отгадай загадку.
Сидит дед в сто шуб одет.
Кто его раздевает,
Тот слёзы проливает.
Давай, составим схему слова лук.
1. Делим слово на слоги.
Произносим с хлопком в ладоши – лук. В этом слове 1 слог.
2. Из каких звуков состоит слог?
Произносим протяжно л-у-к.
Первый звук – [л]. Это твёрдый согласный звук. Второй звук – [у]. Это гласный звук. Звуки [л], [у] сливаются вместе, получается слияние [лу]. Выбираем нужную карточку – слияние твёрдого согласного с гласным звуком.
Третий звук [к] – твёрдый согласный. Выбираем карточку для твёрдого согласного.
3. Обозначим звуки буквами. Звук [л] обозначаем буквой “эль”. Звук [у] – буквой “у”. Звук [к] – буквой “ка”.
Ударение в односложных словах не ставим. В слове один гласный звук, значит он ударный.
По программе “Школа России” нет обозначений звонкого и глухого согласного. Поэтому можно проявить фантазию и придумать свои обозначения для звонкого и глухого согласного. Например, в игре “Узнай звук” для обозначения звонкого согласного я выбрала колокольчик, а для глухого согласного – смайлик в наушниках. Картинки можно распечатать и использовать в схеме.
Потренироваться давать характеристику звуку можно в игре.
Игра “Узнай звук”
Дать характеристику звуку вам поможет лента букв.
На ленте очень хорошо видно какие звуки обозначают буквы.
Например, буква “эн” обозначает два звука – твёрдый [н] и мягкий [н’]. Поэтому прямоугольник двух цветов – синего и зелёного. Эти звуки звонкие, поэтому сверху – колокольчик.
Все звуки в верхнем ряду звонкие, а в нижнем – глухие.
Буква “жэ” обозначает один звук – твёрдый звук [ж]. Поэтому прямоугольник полностью синего цвета. Это звонкий звук.
Особое внимание надо обратить на йотированные гласные.
Буквы я, ё, ю, е могут обозначать два звука или один.
Если они стоят в начале слова или после гласного, они обозначают два звука:
я [й’ а], ё [й’ о], ю [й’ у], е [й’ э]
После согласного звука они обозначают один звук: я [а], ё [о], ю [у], е [э].
Составим схему слова Яна.
1. Делим слово на слоги.
Я – на
В этом слове два слога.
2. Первый слог – я. Это слияние двух звуков – [й’], [а]. Звук [й’] – мягкий согласный, звук [а] – гласный. Выбираем карточку – слияние мягкого согласного и гласного звука.
3. Ставим разделительную черту после первого слога.
3. Второй слог – на. Это слияние двух звуков – [н], [а]. Звук [н] – твёрдый согласный, звук [а] – гласный. Выбираем карточку – слияние твёрдого согласного и гласного звука.
4. Ставим ударение. Находим ударный слог. Говорим слово целиком, выделяя ударный слог. Ударный слог – первый. Чтобы ребёнок понял, что ударение поставлено верно, попробуйте поставить ударение и на второй слог.
5. Обозначаем звуки буквами.
Звуки [й’а] обозначают одной буквой – буквой я.
Звук [н] обозначают буквой “эн”.
Звук [а] обозначают буквой а.
Все условные обозначения звуков в статье взяты из программы “Школа России”. Но для нас самое главное, чтобы ребёнок научился давать характеристику звуку, умел работать с моделями. Если ребёнок научился давать характеристику звуку, то заменить обозначение не составит труда.
Как правильно составить звуковую схему слова
в 1 классе
Выполняя звуко-буквенный разбор, используют цвета:
красный – для обозначения гласных звуков,
синий — для обозначения твёрдых согласных,
зелёный — для обозначения мягких согласных.
В русском языке 33 буквы:
10 букв, обозначающих гласные звуки:
А, О, У, Ы, Э – обозначают твёрдость впереди стоящих согласных;
Я, Е, Ё, И, Ю – обозначают мягкость впереди стоящих согласных;
(буквы Я, Е, Ё, Ю – звуков не обозначают).
Гласные ( Я Е Ё Ю – йотированные:
[й’а], [й’э], [й’о], [й’у].
Они обозначают 2 звука:
- в начале слова — яма – [ й’ а м а ];
- если стоят после мягкого или твёрдого знака —
съел — [с й’ э л] льёт — [ л’ й о т ];
- стоят после гласного звука — поют — [ п а й’ у т ].
В остальных случаях Я, Е, Ё, Ю обозначают 1 звук (соответственно: я – [а], е – [э], ё – [о], ю – [у]).
Например: мяч — [м’ а ч’ ],
лён — [ л’ о н ], люк — [ л’ у к ]).
21 буква, обозначающая согласные звуки:
Б, В, Г, Д, Ж, 3, Й, К, Л, М, Н, П, Р, С, Т, Ф, X, Ц, Ч, Ш, Щ.
2 буквы:
Ъ и Ь – звуков не обозначают.
Всегда твердые согласные: [Ж], [Ш], [Ц] — жир – [ ж ы р ],
цель- [ ц э л’ ],
Всегда мягкие: [Ч]. [Щ], [Й]. Чай — [ ч’ а й’ ],
щавель – [щ’ а в э л’ ].
Все остальные согласные звуки могут быть как твёрдыми, так и мягкими.
Как составить звуковую схему слова?
Уважаемые родители, на этапе обучения грамоте ребята учатся составлять звуковую схему или, по-другому, модель слова. Помогите ребёнку разобраться в составлении звуковой модели слова.
Я приведу примеры звуковых схем по программе “Школа России”. Там обозначения разных звуков различаются по цвету.
Итак, освежим в памяти знания по фонетике, которые вы получили в школе.
Гласных звуков в русском языке шесть – [а], [о], [у], [ы], [э], [и]
Согласные образуют пары по твёрдости-мягкости, по глухости- звонкости.
Есть непарные согласные.
Мягкий знак и твёрдый знак звуков не обозначают.
Буквы Я, Ё, Ю, Е обозначают два звука, если стоят в начале слова или после гласного звука, обозначают один звук, если стоят после согласного.
В таблице мы видим букву и под ней звук или звуки, которые обозначают этой буквой.
Например, буквой Б обозначают два звука [б], [б’]. Буквой Ж один звук [ж].
Разберём составление звуковой модели слова ПИСЬМО.
Делим слово на слоги: ПИ-СЬМО (как разделить слово на слоги можно посмотреть здесь http://ya-umni4ka.ru/?p=1742 )
Первый слог – ПИ. Это слияние. Гласный звук [и] обозначает мягкость согласного. Первый звук [п’] – мягкий согласный, второй звук [и] – гласный.
Второй слог – СЬМО. Первый звук [с’] – мягкий согласный. Дальше идёт слияние – МО. Гласный звук [о] обозначает твёрдость согласного. Звук [м] – твёрдый согласный. Звук [о] – гласный. Ставим ударение.
В итоге получается такая схема:
Мы с ребятами делаем затем транскрипцию (как мы слышим слово).
[п’ис’мо]
А затем записываем слово: письмо.
Гласные звуки, которые находятся в верхнем ряду таблички – а, о, у, ы, э обозначают твёрдость согласного звука.
Гласные буквы я, ё, е, ю стоят после мягкого согласного, звук [и] тоже обозначает мягкость согласного.
Но необходимо помнить, что есть согласные, которые всегда твёрдые. Они обозначены в таблице только синим цветом: [ж], [ш], [ц]. Есть согласные, которые всегда мягкие, они обозначены только зелёным цветом: [ч’], [щ’], [й’].
Будьте внимательны при разборе слов с йотированными гласными.
Вот пример разбора слова ЯБЛОКО.
В начале слова йотированные гласные обозначают два звука.
Надеюсь, что статья помогла вам немного разобраться в составлении звуковой схемы слова.
В других программах просто другие обозначения звуков. Могут быть не квадратики, а кружки. По другому обозначена твёрдость-мягкость. Но разобраться можно, подставив нужные обозначения.
- Товары
- Клиенты
- Случаи использования
- Переполнение стека Публичные вопросы и ответы
- Команды Частные вопросы и ответы для вашей команды
- предприятие Частные вопросы и ответы для вашего предприятия
- работы Программирование и связанные с ним технические возможности карьерного роста
- Талант Нанимать технический талант
- реклама Связаться с разработчиками по всему миру
Plug — Plug v1.10.3
Plug:
- Спецификация для компонуемых модулей между веб-приложениями
- Адаптеры подключения для различных веб-серверов в Erlang VM
Документация для Plug доступна в Интернете.
Монтаж
Чтобы использовать Plug, вам нужен веб-сервер и его привязки для Plug. Веб-сервер Cowboy является наиболее распространенным, и его можно установить, добавив plug_cowboy
в качестве зависимости к вашему миксу .exs
:
def deps do
[
{: plug_cowboy, "~> 2.0"}
]
конец
Привет мир
дефмодуль MyPlug do
Импорт Plug.Conn
def init (опции) делать
# инициализировать параметры
параметры
конец
вызов def (conn, _opts) do
сопп
|> put_resp_content_type ("text / plain")
|> send_resp (200, «Привет, мир»)
конец
end
В приведенном выше фрагменте приведен очень простой пример использования Plug. Сохраните этот фрагмент в файл и запустите его в приложении plug с:
$ iex -S mix
iex> c "путь / к / файлу.бывший»
[MyPlug]
iex> {: ok, _} = Plug.Cowboy.http MyPlug, []
{: ok, #PID <...>}
Доступ к http: // localhost: 4000 / и все готово! На данный момент мы напрямую запустили сервер в нашем терминале, но для производственных развертываний вы, вероятно, захотите запустить его в дереве контроля. См. Раздел «Контролируемые обработчики» далее.
Контролируемые обработчики
В производственной системе вы, вероятно, захотите запустить свой конвейер Plug под деревом контроля вашего приложения.Запустите новый проект Elixir с флагом --sup
:
$ mix new my_app --sup
, а затем обновите lib / my_app / application.ex
следующим образом:
defmodule MyApp do
# См. Https://hexdocs.pm/elixir/Application.html
# для получения дополнительной информации о приложениях OTP
@moduledoc ложь
использовать приложение
def start (_type, _args) do
# Перечислите все дочерние процессы, которые нужно контролировать
дети = [
{Plug.Cowboy, схема: http, plug: MyPlug, параметры: [порт: 4001]}
]
# Смотрите https: // hexdocs.пм / эликсира / Supervisor.html
# для других стратегий и поддерживаемых опций
opts = [стратегия:: one_for_one, имя: MyApp.Supervisor]
Supervisor.start_link (дети, опции)
конец
end
Теперь запустите mix run --no-halt
, и он запустит ваше приложение с веб-сервером, работающим на localhost: 4001
.
Поддерживаемые версии
Отделение | Поддержка |
---|---|
v1.8 | Исправление ошибок |
v1.7 | Только исправления безопасности |
v1.6 | Только исправления безопасности |
v1.5 | Только исправления безопасности |
v1.4 | Не поддерживается с 12/2018 |
v1. 3 | Не поддерживается с 12/2018 |
v1.2 | Не поддерживается с 06/2018 |
v1.1 | Не поддерживается с 01/2018 |
v1.0 | Не поддерживается с 05/2017 |
В примере с Hello World мы определили наш первый плагин.Что такое вилка в конце концов?
Вилка принимает две формы. Функциональный штекер получает соединение и набор параметров в качестве аргументов и возвращает соединение:
def hello_world_plug (conn, _opts) do
сопп
|> put_resp_content_type ("text / plain")
|> send_resp (200, «Привет, мир»)
end
В модульном штекере реализована функция init / 1
для инициализации опций и функция call / 2
, которая получает соединение и инициализированные опции и возвращает соединение:
defmodule MyPlug do
def init ([]), do: false
вызов def (conn, _opts), do: conn
конец
В соответствии с приведенной выше спецификацией соединение представлено штекером .Conn
struct:
% Plug.Conn {хост: "www.example.com",
path_info: ["bar", "baz"],
...}
Данные могут считываться непосредственно из соединения, а также сопоставляться с шаблоном. Управление соединением часто происходит с использованием функций, определенных в модуле Plug.Conn
. В нашем примере put_resp_content_type / 2
и send_resp / 3
определены в Plug.Conn
.
Помните, что, как и все в Elixir, соединение является неизменным , поэтому каждая манипуляция возвращает новую копию соединения:
conn = put_resp_content_type (conn, "text / plain")
conn =
.Схема (Стэнфордская энциклопедия философии)
1. Что такое схема?
Схема представляет собой сложную систему, состоящую из
- шаблон текста или шаблон схемы : синтаксический строка, состоящая из значимых слов и / или символов, а также из заполнители (буквы, пробелы, числа в кружках, эллипсы, порядковые номера) числовые выражения, такие как «первый» и « секунда и т. д.) и
- условие стороны , указывающее, как заполнители должны быть заполнены для получения экземпляров, а также, иногда, как значимые слова или символы должны быть поняты (Tarski 1933/1983: 155; Церковь 1956: 172).В частности, условие стороны указывает язык, будь то естественный или формальный, к которому Схема должна принадлежать.
Среди наиболее известных схем — схема Тарского Т, у которой template-text — это строка из двух эллипсов из восьми слов:
… Является верным предложением тогда и только тогда, когда…
Условие стороны требует, чтобы второй бланк был заполнен с (декларативным) предложением английского языка и первым пробелом заполнено именем этого предложения (Tarski 1933/1983: 155). следующая строка является экземпляром:
«Ноль есть один» — это верное предложение тогда и только тогда, когда ноль один.
Более показательные случаи получаются с помощью предложения, не известного быть верным и не известно, чтобы быть ложным:
«Каждое совершенное число четное» является верным предложением, если и только если каждое идеальное число чётно.
Предложение из четырнадцати слов
Либо ноль является четным, либо это не тот случай, когда ноль является четным.
это экземпляр схемы исключенного среднего предложения для Английский , который включает в себя шаблон
Либо \ (A \), либо это не тот случай, когда \ (A \).
Дополнительным условием является то, что два вхождения ‘\ (A \)’ должны быть заполнены вхождениями того же правильного английского языка декларативное предложение, что разрывное выражение ‘либо … или … ‘; выражает классический неэксклюзивный дизъюнкция, и что префикс-предложение из шести слов ‘это не дело, которое ‘; выражает классическое отрицание. Обратите внимание, что это схема-шаблон не является английским предложением. Было бы строго говоря, бессмысленно использовать его в качестве предложения в попытке утверждение.Также было бы неправильно называть это истиной или ложью, хотя это может быть охарактеризован как действительный или недействительный, в соответствующих эти неоднозначные слова.
Некоторые логики, кажется, идентифицируют схему только с помощью шаблона. (Формулировка Тарского в 1933/83: 155–6 говорит об этом идентификация, в то время как церковь в 1956 году: 149 кажется рассчитанным на избегайте этого.) Но одна и та же схема-шаблон может быть компонентом любое количество различных схем в зависимости от состояния стороны или основной язык.Кроме того, поскольку разные персонажи или Строки могут быть использованы в качестве заполнителей (см. выше) и так как даже один изменение нотации производит другую синтаксическую строку в строгом смысла (Corcoran et al. 1974), один и тот же набор примеров может быть определяется различными парами схемы-шаблона / побочного условия даже учитывая фиксированный язык. Это может быть тот факт, что некоторые авторы напишите, как будто схема должна быть идентифицирована с набором экземпляров. Для многих целей это набор указанных экземпляров, которые имеет первостепенное значение, и вопрос о том, что именно участвует при уточнении это считается простой технически.
Иногда (как в схеме исключенного-среднего, выше) заполнители в схеме-шаблоне отмечены буквы. Важно держать в имейте в виду различие между, с одной стороны, открытым предложением, таким как ‘\ ((X + y) = (y + x) \)’; чей объектный язык числовой переменные ‘\ (x \)’ и ‘\ (y \)’ находятся в диапазоне числа и, с другой стороны, схема, такая как теоретико-числовой схема коммутативности , текст шаблона которой равен ‘\ ((X + Y) = (Y + X) \) ’; и чье побочное условие заключается в том, что два вхождения «\ (X \)» должны быть заменены двумя вхождениями одного и то же самое число, а также для двух случаев «\ (Y \)».Цифры принадлежат объектному языку, а заполнители принадлежат метаязыку. Переменные в диапазон объектного языка в области объектов, в то время как фиктивный буквы в шаблоне-тексте являются просто заполнителями для синтаксического substituends. (Для тщательного изложения различия см. Quine 1945 г .: с. 1.)
Схемы могут быть классифицированы по синтаксическому типу их экземпляров как схемы предложений, вспомогательные схемы или схемы аргумент-текст. Мы уже видел два примера схем предложений.Строка
преемник \ (А \)
текст шаблона для вспомогательной схемы , где боковое условие указывает, что буква ‘\ (A \)’ будет заменяется арабской цифрой. Определенное описание
преемник 9
был бы экземпляр. Обратите внимание, что эта схема сильно отличается от открытый срок
преемник \ (х \),
где ‘\ (x \)’ — переменная объектного языка. схема по сути является рецептом для генерации синтаксических экземпляров. ‘Пустышка’ ‘\ (A \)’ в тексте шаблона просто заполнитель для подзаголовков (здесь, цифры). «\ (Х \)» в открытом выражении, напротив, является переменной ранжирование по объектам (здесь номера).
текстовая схема аргумента является схемой, экземпляры которой Аргумент-тексты. Текст аргумента представляет собой систему из двух частей состоит из набора предложений, называемых помещениями и одного Приговор называется заключением. (Аргумент — это то, что выражается аргументом-текстом, поскольку предложение — это то, что выражается предложением.) Из различных способов представления текст аргумента, возможно, один из наименее открытых для неправильного толкования формат помещения-строки-заключения, заключающийся в перечислении помещения сопровождаемый линией, сопровождаемой заключением. Например:
\ [ \ Начать {} Align & \ textrm {Каждый круг — это многоугольник.} \\ & \ textrm {Каждый треугольник — это круг.} \\ & \ textrm {Каждый квадрат — это треугольник.} \\\ hline & \ textrm {Каждый квадрат — это многоугольник.} \ Конец {} Align \]Примером схемы аргумент-текст является правило вывода modus Понен :
\ [ \ Начать {} Align & A \\ & \ textrm {if} A \ textrm {then} B \\\ hline & B \ Конец {} Align \]Боковое условие указывает, что ‘\ (A \)’ и ‘\ (B \)’ заменить на декларативные предложения на английском языке, и что оба случая of \ (A \) ’(а также ‘\ (B \)’) заменить тем же предложением или формулой.
Схемы аксиомы можно рассматривать как аргумент-текст с нулевой предпосылкой схемы.
2. Использование схем
Схемы используются при формализации логики, математики и семантика. В логике они используются для указания аксиом и вывода правила системы. Например, одна формализация логики первого порядка (в Шапиро 1991: 65) говорится, что
Любая формула, полученная путем замены формул на греческие буквы аксиома :
\ [\ begin {align} \ Phi & \ rightarrow (\ Psi \ rightarrow \ Phi) \\ (\ Phi \ rightarrow (\ Psi \ rightarrow \ Xi)) & \ rightarrow ((\ Phi \ rightarrow) \ Пси) \ rightarrow (\ Phi \ rightarrow \ Xi)) \\ (\ neg \ Phi \ rightarrow \ neg \ Psi) & \ rightarrow (\ Psi \ rightarrow \ Phi) \\ \ forall x \ Phi (x) & \ rightarrow \ Phi (t) \ end {align} \]где \ (t \) — термин, свободный для \ (x \) в \ (\ Phi \),
и что любой вывод формы
\ [ \ Начать {} Align & \ Phi \\ & \ Phi \ rightarrow \ Psi \\\ hline & \ Psi \\ \ Конец {} Align \]или (где \ (x \) не встречается свободно в \ (\ Phi) \)
\ [ \ Начать {} Align \ Phi & \ rightarrow \ Psi (x) \\\ hline \ Phi & \ rightarrow \ forall x \ Psi (x), \ Конец {} Align \]действует.
Некоторые математические теории могут быть конечно аксиоматизированы в язык первого порядка, но определенное исторически важное число теории и теории множеств не могут. Аксиомы этих теорий могут иногда указывается с использованием схем. Например, в первом порядке Теория чисел принцип индукции определяется с помощью схема
\ [[F (0) \ mathbin {\ &} \ forall x ((\ textit {Num} (x) \ mathbin {\ &} F (x)) \ rightarrow F (sx)] \ rightarrow \ forall x (\ textit {Num} (x) \ rightarrow F (x)) \]где два пробела, помеченные как «\ (F (x) \)», должны быть заполнены с формулой первого порядка, имеющей одно или несколько свободных вхождений переменная ‘\ (x \)’, пробел помечен ‘\ (F (0) \)’ должен заполняться той же формулой после каждого свободного вхождения ‘\ (X \)’ был заменен вхождением «0», а пробел с надписью «\ (F (sx) \)» означает заполняться той же формулой после каждого свободного вхождения ‘\ (X \)’ был заменен вхождением «\ (SX \)».
Например, если мы заполним два пробела, помеченные как «\ (F (x) \)» с ‘\ (x \ ne s x \)’ имеем:
\ [[0 \ ne s0 \ mathbin {\ &} \ forall x ((\ textit {Num} (x) \ mathbin {\ &} x \ ne s x) \ rightarrow s x \ ne ss x)] \ rightarrow \ forall x (\ textit {Num} (x) \ rightarrow x \ ne s x) \]Используя английский как основной объектный язык, следующее Шаблон текста может быть использован.
Если ноль равен \ (F \) и преемник каждого числа, являющегося \ (F \) также \ (F \), то каждое число равно \ (F \),
где четыре вхождения ‘\ (F \)’ должны быть заполнены с одним и тем же арифметическим предикатом (например,г. ‘меньше чем какой-то премьер ‘).
В формализации теории чисел второго порядка, напротив, может быть дана единственная аксиома индукции:
\ [\ forall F \ {[F (0) \ mathbin {\ &} \ forall x ((\ textit {Num} (x) \ mathbin {\ &} F (x)) \ rightarrow F (sx)] \ rightarrow \ forall x (\ textit {Num} (x) \ rightarrow F (x)) \} \]Для каждого \ (F \), если ноль равен \ (F \) и преемник каждого числа то есть \ (F \) также \ (F \), то каждое число \ (F \).
Здесь ‘\ (F \)’ — не заполнитель в схеме, а подлинная переменная, варьирующаяся по свойствам или классам (или, на некоторых интерпретации, начиная от множества людей).Для сравнения между логикой первого и второго порядка, см. Corcoran 1998.
Ортогональные сходства между схемой индукции первого порядка и аксиома индукции второго порядка имеет неблагоприятную тенденцию к скрыть важные различия между ними. Последний является предложение на языке, тогда как первый просто рецепт генерировать предложения. И при этом они не равносильно эквивалентны: набор экземпляров схемы индукции первого порядка логически слабее чем аксиома индукции второго порядка.То есть есть предложения арифметика первого порядка, которая может быть выведена из второго порядка аксиома индукции (вместе с другими аксиомами арифметики, которые являются общими для арифметики первого и второго порядка), но не из примеры схемы индукции первого порядка (см. Шапиро 1991: 110).
Схемы также сыграли заметную роль в семантике. Тарский провел что экземпляр его «T-схемы» (которую он называет «Схема») может рассматриваться как «частичное определение правды »или, вернее,« истинного предложения »:
Общая схема такого рода предложений может быть изображена в следующим образом:
- (2) \ (х \) является истинным предложение тогда и только тогда, когда \ (р \).
Чтобы получить конкретные определения, мы подставляем вместо символ «\ (p \)» в этой схеме любое предложение, а в место ‘\ (x \)’ любого отдельного названия этого предложения. (Tarski 1933/1983: 155–6)
Он принял это за критерий адекватности для определения «Истинное предложение» для языка, который имеет все такие «Частичные определения» как последствия (Tarski 1933/1983: 187-8).
3. Онтологический статус схем
Важно иметь четкое представление о смешанном онтологическом статусе схемы.Шаблон-текст схемы является синтаксическим объектом, строка символов и имеет те же онтологические предпосылки, что и цифры, слова, формулы и тому подобное. Например, шаблон текста для английской схемы именования выражение… называет сущность… ’- это выражение из сорока символов, включающее двадцать семь букв, шесть вхождений пространства и семь вхождений периода. На с другой стороны, побочное условие — это целенаправленная сущность, сравнимая к предложению.
Шаблон схемы — это строковый тип, имеющий неограниченное количество токенов в Чувство Пирса (Peirce 1906; Corcoran et al. 1974: 638 n. 5). Но ни один из токенов схемы-шаблона не является экземпляром схемы. Фактически, каждый экземпляр схемы является строковым типом, имеющим свои жетоны. Слово «экземпляр» является существительным отношения для отношение определенных типов строк к определенным схемам. Слово ‘Token’ — существительное отношения для определенного отношения макроскопические физические объекты относятся к определенным абстрактным объектам.ни схема, ни шаблон схемы — это существительное, обозначающее экземпляры, и ни одно из них не является собственным именем набора экземпляров.
Некоторые философы подчеркивают, что онтологическая экономика возможна благодаря используя схемы, а не аксиомы второго порядка (например, Quine 1970/1986). Но редко, если когда-либо, эти философы представляют полный и объективный обсуждение «онтологических обязательств», связанных с использование схем. Например, теория чисел как таковая предполагает существование чисел и, возможно, числовых функций и числовые свойства, но это не предполагает существование математическая запись и fortiori не предполагает существование обширной, сложной системы обозначений, которую мы называем язык теории чисел.Иногда использование схем может уменьшить онтологические обязательства объектного языка, в то время как увеличение метаязыка или, по крайней мере, не достижение какого-либо чистые сбережения.
4. Схемы в истории логики
Греческое слово «схема»; был использован в Академии Платона за «[геометрическую] фигуру» и в лицее Аристотеля для «[силлогистической] фигуры». Хотя Аристотель Силлогистические фигуры или «схемы» не были схемами в современный смысл, настроения Аристотеля были. Например, шаблон-текст настроения BARBARA
\ [ \ Начать {} Align & P \ textrm {принадлежит каждому} M.\\ & M \ textrm {принадлежит каждому} S. \\\ hline & P \ textrm {принадлежит каждому} S. \ Конец {} Align \]Связанное побочное условие состоит в том, что (1) оба случая ‘\ (P \)’ должны быть заполнены вхождениями одного и одинаковое существительное, (2) оба вхождения ‘\ (M \)’ являются быть наполненным вхождениями одного и того же нарицательного, кроме тот, который используется для ‘\ (P \)’, (3) оба вхождения ‘\ (S \)’ должны быть заполнены вхождениями одного и такие же нарицательные, как те, которые используются для ‘\ (P \)’ и ‘\ (M \)’, и что (4) выражение «Принадлежит каждому» используется для выражения универсального утвердительное предикативность, как в до аналитики .Правила стоической логики высказываний были приняты за схемы.
Трудно датировать самосознательное использование слова «Схемы»; в современном смысле. Рассел Введение в математическую философию (1919) использует его случайно описать пропозициональные функции:
Пропозициональная функция… может рассматриваться как простая схема, просто оболочка, пустая емкость для смысла, а не что-то уже существенный. (1919: 157)
Но пропозициональные функции не являются синтаксическими схемами в современном смысл.Документ Тарского 1933 года с определением истины (Tarski 1933/1983: 157, 160, 172) была одной из первых выдающихся публикаций, которая использовала Слово «схема» в некотором смысле близко к тому, что в этой статье (Tarski 1933/1983: 155, 156). Тарский также использует слово «Схема» и его множественное число «схемы», в период перед Второй мировой войной (1983: 63–64, 114, 310, 386, 423).
В формализации логики начала двадцатого века использовались так называемые «Правила замещения» с конечным набором аксиом вместо схемы, которые задают бесконечно много аксиом.Эти «Правила замещения» не были знакомыми «Подставляя равных равным»; скорее они были ближе к тому, что сегодня называется правилами реализации. Интуитивная мотивация для «правил замещения» было очень просто, но синтаксический детали их реализации были «невыносимо сложный »- использовать слова Пола Розенблюма (1950: 109). На самом деле несколько первоклассных логиков привели в замешательство ошибки, так как документы Розенблюма в том месте только что цитировались. Церковь (1956: 158) приписывает фон Нейману «устройство использования аксиомы схемы », что сделало (общеизвестно трудно заявить) правило замены не требуется.
Как подчеркнул Черч (например, 1956: 59), метаматематическая обработка схем требует использования формализованных или логически совершенных языков и аксиоматизированная теория струн, найденная впервые в Документ Тарского 1933 года об определении истины (1933/1983: 152–256). Более подробно об истории, философии и математике этого важного но несколько заброшенной области, см. Corcoran и др. . 1974; Коркоран 2006).
,штепсельная вилка и розетка типа A & B
ТИПЫ A & B
В США, Канаде, Японии и Центральной Америке используются два типа бытовых розеток: незаземленный тип A (NEMA 1-15) и заземленный тип B (NEMA 5-15). (Полный список стран, которые используют типы A и B, можно найти здесь.)
ТИП A
Эта незаземленная вилка класса II с двумя плоскими параллельными штырьками в значительной степени стандартна в большинстве стран Северной и Центральной Америки. Он известен как NEMA 1-15 и был изобретен в 1904 году Харви Хаббелом II.Штекер имеет два плоских лезвия толщиной 1,5 мм, длиной 15,9-18,3 мм и разнесенных на 12,7 мм. Вилки типа A обычно поляризованы и могут быть вставлены только одним способом, потому что два лезвия не имеют одинаковую ширину. Ширина лезвия, подключенного к нейтрали, составляет 7,9 мм, а ширина горячего лезвия — 6,3 мм. Эта вилка рассчитана на 15 А. С 1965 года незаземленные розетки типа А больше не разрешены в новых конструкциях в Соединенных Штатах и Канаде, но их все еще можно найти в старых зданиях.
Штекерытипа A и B имеют два плоских штыря с (часто, но не всегда) отверстием возле наконечника.Эти дыры не без причины. Если бы вы разобрали розетку типа A или B и посмотрели на контактные стеклоочистители, в которые вставляются зубцы, вы бы обнаружили, что в некоторых случаях на них есть неровности. Эти выпуклости вставляются в отверстия, так что розетка может крепче удерживать штыри вилки. Это предотвращает выскальзывание вилки из розетки из-за веса вилки и шнура. Это также улучшает контакт между вилкой и розеткой. Однако в некоторых гнездах нет таких выступов, а только два лезвия пружинного действия, которые захватывают боковые поверхности штыря вилки, и в этом случае отверстия не нужны.
Есть также несколько специальных розеток, которые позволяют зафиксировать шнур в розетке, пропустив стержни через отверстия. Таким образом, торговые автоматы и т.п. не могут быть отключены. Кроме того, электрические устройства могут быть изготовлены с помощью на заводе-изготовителе , используя пластиковую стяжку или небольшой замок через одно или оба отверстия для штепсельных вилок. Например, производитель может наложить пластиковую ленту через отверстие и прикрепить ее к бирке с надписью: «Вы должны сделать X или Y, прежде чем подключать это устройство».Пользователь не может подключить устройство без удаления тега, поэтому пользователь обязательно увидит тег.
,