Таблица строение клетки анатомия: Строение клетки – таблица с органоидами и их функциями (9 класс)

Содержание

Структура и функции клетки. | Биология

Клетка – элементарная единица живой системы. Различные структуры живой клетки, которые отвечают за выполнение той или иной функции, получили название органоидов, подобно органам целого организма. Специфические функции в клетке распределены между органоидами, внутриклеточными структурами, имеющими определенную форму, такими, как клеточное ядро, митохондрии и др.

Клеточные структуры:

Цитоплазма. Обязательная часть клетки, заключенная между плазматической мембраной и ядром. Цитозоль – это вязкий водный раствор различных солей и органических веществ, пронизанный системой белковых нитей – цитоскелетам. Большинство химических и физиологических процессов клетки проходят в цитоплазме. Строение: Цитозоль, цитоскелет. Функции: включает различные органоиды, внутренняя среда клетки
Плазматическая мембрана. Каждая клетка животных, растений, грибов ограничена от окружающей среды или других клеток плазматической мембраной. Толщина этой мембраны так мала (около 10 нм.), что ее можно увидеть только в электронный микроскоп.

Липиды в мембране образуют двойной слой, а белки пронизывают всю ее толщину, погружены на разную глубину в липидный слой или располагаются на внешней и внутренней поверхности мембраны. Строение мембран всех других органоидов сходно с плазматической мембраной. Строение: двойной слой липидов, белки, углеводы. Функции: ограничение внутренней среды, сохранение формы клетки, защита от повреждений, регулятор поступления и удаления веществ.

Лизосомы. Лизосомы – это мембранные органоиды. Имеют овальную форму и диаметр 0,5 мкм. В них находится набор ферментов, которые разрушают органические вещества. Мембрана лизосом очень прочная и препятствует проникновению собственных ферментов в цитоплазму клетки, но если лизосома повреждается от каких-либо внешних воздействий, то разрушается вся клетка или часть ее.

Лизосомы встречаются во всех клетках растений, животных и грибов.

Осуществляя переваривание различных органических частиц, лизосомы обеспечивают дополнительным «сырьем» химические и энергетические процессы в клетке. При голодании клетки лизосомы переваривают некоторые органоиды, не убивая клетку. Такое частичное переваривание обеспечивает клетке на какое-то время необходимый минимум питательных веществ. Иногда лизосомы переваривают целые клетки и группы клеток, что играет существенную роль в процессах развития у животных. Примером может служить утрата хвоста при превращении головастика в лягушку. Строение: пузырьки овальной формы, снаружи мембрана, внутри ферменты. Функции: расщепление органических веществ, разрушение отмерших органоидов, уничтожение отработавших клеток.

Комплекс Гольджи. Поступающие в просветы полостей и канальцев эндоплазматической сети продукты биосинтеза концентрируются и транспортируются в аппарате Гольджи. Этот органоид имеет размеры 5–10 мкм.

Строение: окруженные мембранами полости (пузырьки). Функции: накопление, упаковка, выведение органических веществ, образование лизосом


Эндоплазматическая сеть
. Эндоплазматическая сеть является системой синтеза и транспорта органических веществ в цитоплазме клетки, представляющая собой ажурную конструкцию из соединенных полостей.
К мембранам эндоплазматической сети прикреплено большое число рибосом – мельчайших органоидов клетки, имеющих вид сферы с диаметром 20 нм. и состоящих из РНК и белка. На рибосомах и происходит синтез белка. Затем вновь синтезированные белки поступают в систему полостей и канальцев, по которым перемещаются внутри клетки. Полости, канальцы, трубочки из мембран, на поверхности мембран рибосомы. Функции: синтез органических веществ с помощью рибосом, транспорт веществ.

Рибосомы
. Рибосомы прикреплены к мембранам эндоплазматической сети или свободно находятся в цитоплазме, они располагаются группами, на них синтезируются белки. Состав белка, рибосомальная РНК Функции: обеспечивает биосинтез белка (сборку белковой молекулы из аминокислот).
Митохондрии. Митохондрии – это энергетические органоиды. Форма митохондрий различна, они могут быть остальными, палочковидными, нитевидными со средним диаметром 1 мкм. и длиной 7 мкм. Число митохондрий зависит от функциональной активности клетки и может достигать десятки тысяч в летательных мышцах насекомых. Митохондрии снаружи ограничены внешней мембраной, под ней – внутренняя мембрана, образующая многочисленные выросты – кристы.

Внутри митохондрий находятся РНК, ДНК и рибосомы. В ее мембраны встроены специфические ферменты, с помощью которых в митохондрии происходит преобразование энергии пищевых веществ в энергию АТФ, необходимую для жизнедеятельности клетки и организма в целом.

Мембрана, матрикс, выросты – кристы. Функции: синтез молекулы АТФ, синтез собственных белков, нуклеиновых кислот, углеводов, липидов, образование собственных рибосом.

Пластиды
. Только в растительной клетке: лекопласты, хлоропласты, хромопласты. Функции: накопление запасных органических веществ, привлечение насекомых-опылителей, синтез АТФ и углеводов. Хлоропласты по форме напоминают диск или шар диаметром 4–6 мкм. С двойной мембраной – наружней и внутренней. Внутри хлоропласта имеются ДНК рибосомы и особые мембранные структуры – граны, связанные между собой и с внутренней мембраной хлоропласта. В каждом хлоропласте около 50 гран, расположенных в шахматном порядке для лучшего улавливания света. В мембранах гран находится хлорофилл, благодаря ему происходит превращение энергии солнечного света в химическую энергию АТФ. Энергия АТФ используется в хлоропластах для синтеза органических соединений, в первую очередь углеводов.

Хромопласты. Пигменты красного и желтого цвета, находящиеся в хромопластах, придают различным частям растения красную и желтую окраску. Корень моркови, плоды томатов.

Лейкопласты являются местом накопления запасного питательного вещества – крахмала. Особенно много лейкопластов в клетках клубней картофеля. На свету лейкопласты могут превращаться в хлоропласты (в результате чего клетки картофеля зеленеют). Осенью хлоропласты превращаются в хромопласты и зеленые листья и плоды желтеют и краснеют.

Клеточный центр. Состоит из двух цилиндров, центриолей, расположенных перпендикулярно друг другу. Функции: опора для нитей веретена деления

Клеточные включения. Клеточные включения то появляются в цитоплазме, то исчезают в процессе жизнедеятельности клетки.

Плотные, в виде гранул включения содержат запасные питательные вещества (крахмал, белки, сахара, жиры) или продукты жизнедеятельности клетки, которые пока не могут быть удалены. Способностью синтезировать и накапливать запасные питательные вещества обладают все пластиды растительных клеток. В растительных клетках накопление запасных питательных веществ происходит в вакуолях.


Зерна, гранулы, капли
Функции: непостоянные образования, запасающие органические вещества и энергию

Ядро
. Ядерная оболочка из двух мембран, ядерный сок, ядрышко. Функции: хранение наследственной информации в клетке и ее воспроизводство, синтез РНК – информационной, транспортной, рибосомальной. В ядерной мембране находятся споры, через них осуществляется активный обмен веществами между ядром и цитоплазмой. В ядре хранится наследственная информация не только о всех признаках и свойствах данной клетки, о процессах, которые должны протекать к ней (например, синтез белка), но и о признаках организма в целом. Информация записана в молекулах ДНК, которые являются основной частью хромосом. В ядре присутствует ядрышко. Ядро, благодаря наличию в нем хромосом, содержащих наследственную информацию, выполняет функции центра, управляющего всей жизнедеятельностью и развитием клетки.

Страница не найдена |

Страница не найдена |

404. Страница не найдена

Архив за месяц

ПнВтСрЧтПтСбВс

       

       

     12

       

     12

       

      1

3031     

     12

       

15161718192021

       

25262728293031

       

    123

45678910

       

     12

17181920212223

31      

2728293031  

       

      1

       

   1234

567891011

       

     12

       

891011121314

       

11121314151617

       

28293031   

       

   1234

       

     12

       

  12345

6789101112

       

567891011

12131415161718

19202122232425

       

3456789

17181920212223

24252627282930

       

  12345

13141516171819

20212223242526

2728293031  

       

15161718192021

22232425262728

2930     

       

Архивы

Метки

Настройки
для слабовидящих

их строение, функции, что вырабатывают

«Железы страха и смелости», «бойцы эндокринной системы» – такая контрастная метафора в отношении этих органов вполне объяснима, потому что именно они принимают непосредственное участие в формировании двух базовых человеческих эмоций — страха и гнева. Что такое надпочечники, какова их роль в организме, где они расположены? Попробуем разобраться.

Привлекавшие издавна внимание учёных, эти железы внутренней секреции были впервые описаны выдающимся итальянским врачом и анатомом Бартоломео Евстахием в середине 16 века. В настоящее время наука располагает подробной информацией о строении и функциях надпочечников, однако знаем мы о них, вероятно, ещё далеко не всё.

Как устроены надпочечники?

Надпочечников (иначе адреналовых желёз) в организме человека два. Расположены они в забрюшинном пространстве в области поясницы, и представляют собой небольшие «шапочки» над почками. Несмотря на то, что роль у надпочечников единая, они имеют разную форму. Железа, расположенная слева, визуально похожа на полумесяц, а правая напоминает треугольник.

Строение надпочечника

Снаружи железы покрыты капсулой из соединительной ткани. Взглянув на железу в разрезе, можно обнаружить в ней два слоя. Первый располагается на периферии органа и называется корковым веществом. В центральной области железы находится мозговое вещество.

Чтобы ответить на вопрос, к каким железам относятся надпочечники, достаточно обратиться к их строению. Надпочечники вырабатывают биологически активные вещества — гормоны, которые поступают прямо в кровь. Выводящих протоков у надпочечников нет, поэтому эти органы относят к железам внутренней секреции.

Корковое вещество составляет около 90 % от общей массы желёз. Его образуют клетки, продуцирующие кортикостероидные и половые гормоны.

В корковом слое выделяют три зоны, отличающиеся друг от друга строением составляющих их клеток.

1. Клубочковая – занимает около 15% всего коркового слоя. В её состав входят мелкие клетки, собранные в «клубочки», и синтезирующие минералокортикоиды – альдостерон, кортикостерон, дезоксикортикостерон. Эти гормоны участвуют в регуляции артериального давления и водно-солевого баланса.

2. Пучковая – её структуру составляют длинные пучки крупных клеток, занимающих две трети коры надпочечников. Они вырабатывают глюкокортикоиды — гормоны, влияющие на иммунитет, подавляющие рост соединительной ткани, а также снижающие интенсивность воспалительных, аллергических реакций в организме. К ним относят, в частности, кортизол и кортизон.

3. Сетчатая – состоит из тонкого слоя мелких клеток различной формы, образующих сетчатую структуру. Здесь происходит образование половых гормонов – андростендиона, ДЭАSO4, которые ответственны за развитие вторичных половых признаков человека, имеют значение для вынашивания плода.

Мозговой слой, расположенный в центре надпочечников, состоит из хромаффинных клеток. Несмотря на малую долю в общем объёме желёз, именно клетками мозгового слоя продуцируются катехоламины – адреналин и норадреналин – которые управляют работой организма в условиях стресса.

Для чего нам нужны надпочечники?

Для жизни. И это не высокопарные слова. Безусловная значимость надпочечников подтверждается тем, что при их повреждении или удалении наступает смерть.

Образование гормонов и биологически активных веществ, которые непосредственно влияют на рост, развитие и функционирование жизненно важных органов – основная функция надпочечников. Благодаря гормонам, вырабатываемым мозговым и корковым слоем надпочечников, происходит регуляция различных обменных процессов. Кроме того, они принимают участие в иммунной защите организма, адаптации человека к внешним неблагоприятным условиям и изменяющимся внутренним факторам.

Сегодня известно более 50 стероидных соединений, вырабатываемых только корой надпочечников. К примеру, гидрокортизон обеспечивает накопление гликогена в печени и мышцах, тормозит синтез белка в одних тканях и ускоряет его образование в других. Он влияет также на обмен жиров, угнетает деятельность лимфоидной и соединительной тканей. Альдостерон отвечает за регуляцию водно-солевого обмена, поддерживая соотношение натриевых и калиевых солей.

Кортизол стимулирует иммунитет. Если организм подвергается непредвиденным нагрузкам, то в срочном порядке начинает вырабатываться данный гормон. Благодаря ему улучшается работа мозга, укрепляется сердечная мышца, организм обретает способность противостоять стрессам разного типа.

Количество адреналина и норадреналина, которые продуцируются клетками мозгового слоя надпочечников, обычно увеличивается в ситуации стресса. Повышение уровня адреналина в крови помогает запустить процессы, которые мобилизуют организм и делают его способным к выживанию в неблагоприятных условиях. При этом учащается дыхание, ускоряется поступление кислорода к тканям, повышается уровень сахара в крови, тонус кровеносных сосудов и давление. За счёт стимулирующего воздействия этих гормонов увеличивается мышечная сила, скорость реакции, выносливость и повышается болевой порог. Это позволяет реагировать на угрозу одним из вариантов - «бей» или «беги».

Регулируя важнейшие жизненные функции, надпочечники помогают нам быстро приспосабливаться к изменениям окружающей среды. Чтобы снизить риски нарушений работы надпочечников, следует по возможности избегать стрессов, быть физически активным, соблюдать режим труда и отдыха, правильно питаться и своевременно обращаться к врачу при появлении жалоб и с профилактическими целями.

Редакция рекомендует:

Соседствуя с щитовидной железой: что такое паращитовидные железы?

4.1: Структура и функции ячеек

Цели обучения

  • Определите клетку, определите основные общие компоненты клеток человека и проведите различие между внутриклеточной жидкостью и внеклеточной жидкостью
  • Описать структуру и функции плазматической (клеточной) мембраны
  • Опишите ядро ​​и его функции
  • Определить структуру и функцию цитоплазматических органелл

Клетка — самая маленькая из живущих в человеческом организме, и все живые структуры в человеческом теле состоят из клеток.В человеческом теле существуют сотни различных типов клеток, которые различаются по форме (например, круглые, плоские, длинные и тонкие, короткие и толстые) и размеру (например, маленькие гранулярные клетки мозжечка в головном мозге (от 4 микрометров) до к огромным ооцитам (яйцеклеткам), продуцируемым в женских репродуктивных органах (100 микрометров), и их функциям. Однако все клетки состоят из трех основных частей: плазматической мембраны , , цитоплазмы , и ядра. Плазматическая мембрана , (часто называемая клеточной мембраной) представляет собой тонкий гибкий барьер, который отделяет внутреннюю часть клетки от внешней среды клетки и регулирует то, что может проходить внутрь клетки и выходить из нее.Внутренне клетка делится на цитоплазму и ядро. Цитоплазма ( цито — = клетка; — плазма = «нечто сформированное») — это место, где выполняется большинство функций клетки. Это немного похоже на смешанное фруктовое желе, где водянистое желе называется цитозолем ; и различные фрукты в нем называются органеллами . Цитозоль также содержит множество молекул и ионов, участвующих в функциях клетки. Различные органеллы также выполняют разные клеточные функции, и многие из них также отделены от цитозоля мембранами.Самая большая органелла, , ядро ​​ отделено от цитоплазмы ядерной оболочкой (мембраной). Он содержит ДНК (гены), которые кодируют белки, необходимые для функционирования клетки.

Вообще говоря, внутренняя среда клетки называется внутриклеточной жидкостью (ICF) (внутри- = внутри; относится ко всей жидкости, содержащейся в цитозоле, органеллах и ядре), в то время как среда вне клетки называется внеклеточной жидкостью . жидкость (ECF) (extra- = за пределами; относится ко всей жидкости вне ячеек).Плазма, жидкая часть крови, является единственным отделением внеклеточной жидкости, которое связывает все клетки в организме.

Рисунок \ (\ PageIndex {1} \) Трехмерное представление простой человеческой клетки. Удаляли верхнюю половину объема ячейки. Цифра 1 показывает ядро, цифры с 3 по 13 показывают различные органеллы, погруженные в цитозоль, а цифра 14 на поверхности клетки показывает плазматическую мембрану

Проверка понятий, терминов и фактов

Вопросы для изучения Напишите свой ответ в форме предложения (не отвечайте нечеткими словами)

1.Что такое клетка?
2. Что такое плазматическая мембрана?
3. Что такое цитоплазма?
4. Что такое внутриклеточная жидкость (ВКЖ)?
5. Что такое внеклеточная жидкость (ВКЖ)?

Плазматическая (клеточная) мембрана отделяет внутреннюю среду клетки от внеклеточной жидкости. Он состоит из жидкого бислоя фосфолипидов (два слоя фосфолипидов), как показано на рисунке \ (\ PageIndex {2} \) ниже, и других молекул. Не многие вещества могут пересекать фосфолипидный бислой, поэтому он служит для отделения внутренней части клетки от внеклеточной жидкости.Другие молекулы, обнаруженные в мембране, включают холестерин , белки, гликолипиды и гликопротеины , некоторые из которых показаны на рисунке \ (\ PageIndex {3} \) ниже. Холестерин, разновидность липидов, делает мембрану немного прочнее. Различные белки, пересекающие бислой (интегральные белки) или находящиеся на его поверхности (периферические белки), выполняют множество важных функций. Канал и белки-переносчики (переносчики) регулируют перемещение определенных молекул и ионов в клетки и из них.Рецепторные белки в мембране инициируют изменения активности клеток, связываясь и реагируя на химические сигналы, такие как гормоны (например, замок и ключ). Другие белки включают те, которые действуют как структурные якоря, связывая соседние клетки и ферменты. Гликопротеины и гликолипиды в мембране действуют как идентификационные маркеры или метки на внеклеточной поверхности мембраны. Таким образом, плазматическая мембрана выполняет множество функций и работает как шлюз, так и селективный барьер.

Рисунок \ (\ PageIndex {2} \) Фосфолипиды образуют основную структуру клеточной мембраны.Гидрофобные хвосты фосфолипидов обращены к сердцевине мембраны, избегая контакта с внутренней и внешней водянистой средой. Гидрофильные головки обращены к поверхности мембраны, контактируя с внутриклеточной и внеклеточной жидкостью.

Рисунок \ (\ PageIndex {3} \) Небольшая область плазматической мембраны, на которой показаны липиды (фосфолипиды и холестерин), различные белки, гликолипиды и гликопротеины.

Проверка понятий, терминов и фактов

Вопросы для изучения Напишите свой ответ в форме предложения (не отвечайте нечеткими словами)

1.Какова функция клеточной мембраны?
2. Какие три типа биомолекул образуют клеточную мембрану?

Почти все клетки человека содержат ядро, в котором находится ДНК, генетический материал, который в конечном итоге контролирует все клеточные процессы. Ядро — самая большая клеточная органелла, и единственная видимая в световой микроскоп. Подобно тому, как цитоплазма клетки окружена плазматической мембраной, ядро ​​окружено ядерной оболочкой , которая отделяет содержимое ядра от содержимого цитоплазмы. Ядерные поры в оболочке — это небольшие отверстия, которые контролируют, какие ионы и молекулы (например, белки и РНК) могут входить и выходить из ядра. Помимо ДНК, ядро ​​содержит множество ядерных белков. Вместе ДНК и эти белки называются хроматином . Область внутри ядра, называемая ядрышком , связана с производством молекул РНК, необходимых для передачи и выражения информации, закодированной в ДНК. См. Все эти структуры ниже на рисунке \ (\ PageIndex {4} \).

Рисунок \ (\ PageIndex {4} \) Ядро клетки человека. Найдите ДНК, ядерную оболочку, ядрышко и ядерные поры. На рисунке также показано, как внешний слой ядерной оболочки продолжается в виде грубого эндоплазматического ретикулума, который будет обсуждаться в следующей задаче обучения.

Проверка понятий, терминов и фактов

Вопросы для изучения Напишите свой ответ в форме предложения (не отвечайте нечеткими словами)

1. Что такое ядерная оболочка?
2.Что такое ядерная пора?
3. Какова функция ядра?

Органелла — это любая структура внутри клетки, которая выполняет метаболическую функцию. Цитоплазма содержит множество различных органелл, каждая из которых выполняет свою функцию. (Обсуждаемое выше ядро ​​является самой крупной клеточной органеллой, но не считается частью цитоплазмы). Многие органеллы представляют собой клеточные компартменты, отделенные от цитозоля одной или несколькими мембранами, очень похожими по структуре на клеточную мембрану, в то время как другие, такие как центриоли и свободные рибосомы, не имеют мембран.См. Рисунок \ (\ PageIndex {5} \) и таблицу \ (\ PageIndex {1} \) ниже, чтобы узнать структуру и функции различных органелл, таких как митохондрии (которые специализируются на производстве клеточной энергии в форме АТФ) и рибосомы (которые синтезируют белки, необходимые для функционирования клетки). Мембраны грубого и гладкого эндоплазматического ретикулума образуют сеть взаимосвязанных трубок внутри клеток, которые являются продолжением ядерной оболочки. Эти органеллы также связаны с аппаратом Гольджи и плазматической мембраной посредством везикул.Разные клетки содержат разное количество разных органелл в зависимости от их функции. Например, мышечные клетки содержат много митохондрий, а клетки поджелудочной железы, вырабатывающие пищеварительные ферменты, содержат много рибосом и секреторных пузырьков.

Рисунок \ (\ PageIndex {5} \) Типичный пример клетки, содержащей первичные органеллы и внутренние структуры. В таблице \ (\ PageIndex {1} \) ниже описаны функции митохондрии, шероховатой и гладкой эндоплазматической сети, аппарата Гольджи, секреторных пузырьков, пероксисом, лизосом, микротрубочек и микрофиламентов (волокон цитоскелета)

Проверка понятий, терминов и фактов

Вопросы для изучения Напишите свой ответ в форме предложения (не отвечайте нечеткими словами)

1.Что такое органелла?
2. Какие органеллы перечислены в модуле?

Структура ячейки

| SEER Training

Представления о клеточной структуре значительно изменились с годами. Ранние биологи рассматривали клетки как простые мембранные мешочки, содержащие жидкость и несколько плавающих частиц. Сегодняшние биологи знают, что клетки намного сложнее, чем это.

В теле есть много разных типов, размеров и форм клеток.Для наглядности вводится понятие «обобщенная ячейка». Он включает в себя функции всех типов ячеек. Клетка состоит из трех частей: клеточной мембраны, ядра и цитоплазмы между ними. Внутри цитоплазмы находятся сложные структуры из тонких волокон и сотен или даже тысяч крохотных, но различных структур, называемых органеллами.

Клеточная мембрана

Каждая клетка тела окружена клеточной (плазменной) мембраной. Клеточная мембрана отделяет материал вне клетки, внеклеточный, от материала внутри клетки, внутриклеточный.Он поддерживает целостность ячейки и контролирует прохождение материалов в ячейку и из нее. Все материалы внутри клетки должны иметь доступ к клеточной мембране (границе клетки) для необходимого обмена.

Клеточная мембрана представляет собой двойной слой молекул фосфолипидов. Белки в клеточной мембране обеспечивают структурную поддержку, образуют каналы для прохождения материалов, действуют как рецепторные участки, действуют как молекулы-носители и обеспечивают маркеры идентификации.

Ядро и ядро ​​

Ядро, образованное ядерной мембраной вокруг жидкой нуклеоплазмы, является центром управления клеткой.Нити хроматина в ядре содержат дезоксирибонуклеиновую кислоту (ДНК), генетический материал клетки. Ядрышко представляет собой плотную область рибонуклеиновой кислоты (РНК) в ядре и место образования рибосом. Ядро определяет, как клетка будет функционировать, а также основную структуру этой клетки.

Цитоплазма

Цитоплазма представляет собой гелеобразную жидкость внутри клетки. Это среда для химической реакции. Он обеспечивает платформу, на которой другие органеллы могут работать внутри клетки.Все функции размножения, роста и репликации клеток выполняются в цитоплазме клетки. Внутри цитоплазмы материалы перемещаются путем диффузии — физического процесса, который может работать только на короткие расстояния.

Цитоплазматические органеллы

Цитоплазматические органеллы — это «маленькие органы», взвешенные в цитоплазме клетки. Каждый тип органелл имеет определенную структуру и определенную роль в функции клетки. Примерами цитоплазматических органелл являются митохондрии, рибосомы, эндоплазматический ретикулум, аппарат Гольджи и лизосомы.

Эукариотическая клетка: определение, структура и органеллы

Автор: Лоренцо Крамби, бакалавр наук • Рецензент: Франческа Сальвадор, магистр наук
Последний раз отзыв: 30 сентября 2021 г.
Время чтения: 20 минут

Клетка — это наименьшая функциональная единица живого организма, которая может функционировать независимо. Он состоит из нескольких типов органелл, которые позволяют клетке функционировать и воспроизводиться.Существует два основных класса клеток: самоподдерживающиеся простые клетки, известные как прокариотические (бактерии и археи), и более сложные зависимые клетки, известные как e ukaryotic . Типы эукариотических клеток обычно встречаются у животных, растений, водорослей и грибов. В рамках данной статьи основное внимание будет уделено структуре и гистологии животной клетки. Также будут изучены основные различия между клетками животных и растений.

Как указывалось ранее, основными компонентами клетки являются ее органеллы.Эти органеллы состоят из различных комбинаций атомов и молекул. Органеллы управляют различными функциями клетки от метаболизма до выработки энергии и, соответственно, репликации. Клетки с определенными функциями объединяются, образуя органов (то есть паренхиму легких). Органы с взаимосвязанными функциями работают вместе в системе (то есть дыхательной системе). Эти системы, хотя и выполняют разные функции, работают совместно, позволяя организму (т.е.е. человека), чтобы выжить. Для выживания клетки важен каждый аспект.

Ключевые факты об эукариотических клетках
Определение ячейки Наименьшая функциональная единица живого организма, которая может функционировать независимо
Типы клеток Прокариоты (бактерии и археи) и эукариотические клетки (у животных, растений, водорослей и грибов)
Плазменная мембрана Фосфолипидный бислой (амфипатический, избирательная проницаемость), холестерин, белки (каналы, переносчики, рецепторы)
Эндоцитоз Фагоцитоз (поглощение твердых веществ), пиноцитоз (поглощение жидкости), рецептор-опосредованный эндоцитоз (поглощение контролируется рецепторами клеточной поверхности)
Цитоплазма Полутвердая среда, которая удерживает органеллы во взвешенном состоянии, а питательные вещества растворяются во внутренней клеточной среде
Цитоскелет Отвечает за форму и поддержку, состоящую из микротрубочек, микрофиламентов, промежуточных волокон, ресничек, жгутиков
Рибосомы Синтез белка, состоящий из малой и большой субъединиц
Эндоплазматическая сеть

Rough — имеет рибосомы, связанные с его поверхностью, хранит белки и является продолжением ядерной мембраны

Smooth — без рибосом, представляет собой набор независимых мешочков или продолжение грубого ER и синтезирует липиды, стероиды и фосфолипиды

Аппарат Гольджи Центр хранения белка, разделенный на цис- и транс-компоненты
Пузырьки Экзоцитотический (для содержимого, которое будет вытеснено), лизосомальный (переваривание и защита белков), секреторный (для регулируемого изгнания содержимого в ответ на стимул)
Митохондрии Производство энергии (АТФ), состоящее из внешней мембраны, внутренней мембраны и межмембранного пространства
Ядро Состоит из хроматина (гетерохроматина, эухроматина), который состоит из ДНК, обернутой вокруг гистоновых белков
Ядерная оболочка Липидный бислой, окружающий ядро ​​с ядерными порами.
Клетки животных и растений

Форма — клетки животных неправильные, клетки растений прямоугольные

Целлюлоза — отсутствует в клетках животных, окружает плазматическую мембрану в клетках растений

Производство АТФ — митохондрии в клетках животных, хлоропласты в клетках растений

Cillia — присутствует в клетках животных, отсутствует в клетках растений

Клинический Апоптоз, гиперплазия, гипертрофия, метаплазия, дисплазия

Плазменная (клеточная) мембрана

Фосфолипидный компонент

Плазматическая мембрана — это самый внешний слой клетки.Основная функция плазматической мембраны — защита клетки от окружающей среды. Его часто называют жидкой мозаикой , фосфолипидный бислой , который является гидрофильным снаружи и внутри, но гидрофобным по своей сути. Свойство гидрофильности возникает из-за заряженной молекулы фосфата, которая образует головку фосфолипида, а гидрофобная природа обусловлена ​​двумя липидными хвостами, которые образуют ядро. Эта особенность обеспечивает селективную проницаемость мембраны.Например, гидрофильные частицы (например, ионы) не могут проходить через гидрофобное ядро, а те, которые являются гидрофобными (например, жиры), отталкиваются от внешней поверхности. В результате клетка может изолировать свою внутреннюю среду от внешней.

Клеточная мембрана

Некоторые фосфолипидные структуры связаны с молекулами холестерина . Последние поддерживают целостность плазматической мембраны, и в более новых исследованиях изучается ее роль в поддержке иммунной системы.

Белковый компонент

Как любой живой организм, клетка не является полностью самодостаточной и, следовательно, потребует питательных веществ из внешней среды, а также для экспорта своих продуктов во внешнюю среду. Контролируемое движение вещества осуществляется с помощью белков , , , каналов, и носителей , , белков , , закрепленных в плазматической мембране, которые избирательно или обычно позволяют определенным частицам входить и выходить из клетки.

Некоторые белковые молекулы помечены цепями гликогена (т. Е. Гликопротеинами) и функционируют как рецепторные каналы , которые инициируют клеточные процессы. Другие белки ограничены либо цитозольным (внутриклеточный белок) , либо внеклеточной поверхностью (внеклеточный белок) мембраны, тогда как другие охватывают всю мембрану (трансмембранные белки) . Это обоснование термина «жидкая мозаика», поскольку он относится к тому факту, что белки, расположенные внутри или на мембране, свободно перемещаются по всему фосфолипидному бислою.

Плазменная мембрана

Поглощение материала

В случае веществ, которые не могут ни проходить через мембрану, ни использовать мембранные каналы, плазматическая мембрана обладает способностью поглощать инородный материал в процессе, известном как эндоцитоз . Этот процесс включает распознавание либо чужеродных микроорганизмов, либо нативных веществ рецепторами на клеточной мембране и последующее сворачивание этой области мембраны вокруг намеченной структуры, транспортируемой в цитоплазму.Эндоцитоз можно подразделить на три типа.

Фагоцитоз включает поступление в клетку неспецифических веществ (обычно твердых). Пиноцитоз включает поступление в клетку определенных веществ (обычно внеклеточной жидкости). Эндоцитоз, опосредованный рецепторами включает специфическое поглощение определенных макромолекул, которое контролируется рецепторами клеточной поверхности.

Цитоплазма

Цитоплазма — это полутвердая среда, в которой органеллы находятся во взвешенном состоянии, а питательные вещества растворены во внутренней клеточной среде.Помимо органелл, цитоплазма также содержит микрофиламенты, микротрубочки и секреторные гранулы. Микрофиламенты и микротрубочки являются частью клеточной архитектуры, которая помогает придать клетке ее структуру (цитоскелет) и играет роль в репликации клеток. Они также вносят вклад в формирование ресничек и жгутиков в некоторых клеточных линиях, которым необходима подвижность.

Рибосомы

Для того, чтобы клетки могли расти и размножаться, они должны производить необходимые строительные блоки для достижения этой цели.Кроме того, некоторые клетки, такие как β-клетки поджелудочной железы, вырабатывают гормоны на основе белка, помогающие поддерживать гомеостаз. Этот процесс достигается рибосомами. Рибосомы — это сложные молекулы на основе рибонуклеиновой кислоты (т.е. рибосомно-рибонуклеиновая кислота; р-РНК), которые отвечают за трансляцию кодированных последовательностей информационной РНК (м-РНК) в белки. Они состоят из малой и большой субъединицы , которые координируются друг с другом для трансляции цепи м-РНК. Некоторые рибосомы связаны с мембраной, а другие свободно плавают в цитоплазме.В то время как свободные рибосомы синтезируют белки , которые используются внутри клетки, белки, синтезированные связанными рибосомами, предназначены для экспорта.

Рибосома

Эндоплазматическая сеть

Есть скопления мешочков и пузырьков, которые образуют цистерн (канальцы) в цитоплазме. Эти структуры составляют эндоплазматический ретикулум. Существует два типа эндоплазматического ретикулума: один, который имеет рибосомы, связанные с его поверхностью — грубый эндоплазматический ретикулум (RER) , а другой не имеет рибосом — гладкий эндоплазматический ретикулум (SER) .

Другой отличительной чертой грубого и гладкого эндоплазматического ретикулума является то, что грубый эндоплазматический ретикулум является продолжением ядерной мембраны, в то время как гладкий эндоплазматический ретикулум может быть либо независимым скоплением мешочков, либо продолжением грубого эндоплазматического ретикулума. Как указывалось ранее, шероховатый эндоплазматический ретикулум хранит белок, синтезированный рибосомами на его поверхности. Напротив, гладкая эндоплазматическая сеть синтезирует фосфолипиды, стероиды и липиды, которые впоследствии используются в синтезе гормонов на основе стероидов.

Аппарат Гольджи

Названная в честь итальянского ученого, открывшего ее в 1898 году, Камиллио Гольджи, эта органелла существует в цитоплазме как центр хранения белков, которые будут распространяться в другие места. Аппарат Гольджи (также называемый комплексом Гольджи или телом Гольджи) структурно подразделяется на компоненты цис и транс . Первый представляет собой уплощенные входящие пузырьки из эндоплазматического ретикулума, которые сливаются с образованием цистерн .Транс-аспект структуры — это область, из которой везикулы отходят, чтобы присоединиться к другим везикулам, лизосомам или поверхности клетки (подлежащей экзоцитозу).

Аппарат Гольджи

Везикулы и лизосомы

Некоторые белки, синтезируемые в клетке, используются клеткой, в то время как другие предназначены для экспорта в другие области тела. Чтобы предотвратить активацию этих продуктов и непреднамеренное взаимодействие с исходной клеткой, они хранятся в мембранных мешочках, называемых везикулами.Есть три основных типа везикул; экзоцитозные, лизосомальные и секреторные везикулы. Экзоцитоз , везикулы содержат белки, которые выводятся из клетки посредством экзоцитоза. Это происходит, когда везикулы сливаются с цитоплазматической мембраной и выталкивают ее содержимое во внеклеточное пространство. Например, высвобождение антител из активированных B-клеток во время гуморального иммунного ответа.

Белки, расположенные в секреторных пузырьках , также предназначены для внеклеточного высвобождения, но требуют стимула; высвобождение нейромедиатора ацетилхолина (ACh) из телодендрий нейронов в синаптическую щель после стимуляции потенциалом действия.

Лизосома

С другой стороны, протеазы — это ферменты, предназначенные для переваривания белка. Это особые белки, которые участвуют в клеточной деградации апоптозом (запрограммированная гибель клеток) или как часть защитного механизма от вторжения патогенов. В любом случае эти ферменты хранятся в лизосомах для последующего высвобождения. Когда есть органелла, клетка или микроорганизм, подлежащие перевариванию, вокруг вещества, подлежащего растворению, образуется везикула, которая впоследствии сливается с лизосомой.Это делается для предотвращения непреднамеренного повреждения других цитоплазматических структур.

Митохондрии

Митохондрии (т. Е. Митохондрии), часто называемые «электростанцией» клетки, представляют собой удлиненную двойную мембранную структуру с многочисленными кристами внутри ее внутренней мембраны. Помимо связанных с мембраной белков АТФ-синтазы, которые способствуют производству АТФ, митохондрии являются единственными органеллами, которые содержат собственный ДНК-материал и, следовательно, способны к репликации.

Митохондрия

Наружная мембрана , которая покрывает всю органеллу, снабжена прионными белками, которые позволяют избирательно поглощать размер некоторых веществ. Внутренняя мембрана также содержит специфические белки, такие как АТФ-синтаза (производит АТФ), цитохром С (выполняет окислительно-восстановительные реакции) и транспортные белки (для избирательного поглощения материала митохондриальным матриксом). Составляющие межмембранного пространства (между внутренней и внешней мембранами) очень похожи на таковые в цитоплазме клетки.

Матрица — это место, в котором происходит цикл лимонной кислоты (цикл Кребса — процесс образования АТФ). Количество митохондрий, обнаруженных в конкретной клетке, зависит от ее функции. Например, сердечные миоциты содержат больше митохондрий, чем эпителиальные клетки кожи, потому что им требуется больше АТФ, чтобы сделать их устойчивыми к усталости.

Ядро

Это самая большая структура в ячейке. Он ограничен ядерной оболочкой и содержит ядрышко, матрицу и, что наиболее важно, наследственный генетический материал, известный как дезоксирибонуклеиновая кислота (ДНК) .Внутри каждой клетки находится примерно два метра микроскопического генетического материала. Этот огромный объем ДНК может удерживаться в клетке, плотно наматывая его вокруг гистонов (белковый каркас), которые впоследствии укладываются в стопку хромосом . Однако ДНК существует только в виде хромосом на активных стадиях клеточного деления. Когда клетка находится в фазе роста, ДНК принимает форму либо эухроматина , либо гетерохроматина .ДНК, которая принимает эухроматическую форму, обычно чаще транскрибируется и экспрессируется клеткой.

Внутри ядра находится уникальная область, известная как ядрышко . Это область, где находится ДНК, кодирующая рибосомную РНК (или тандемные повторы). Основная функция состоит в том, чтобы производить и ассимилировать р-РНК, которая будет экспортироваться в цитоплазму для трансляции м-РНК.

Ядерная оболочка

Существует еще одна избирательно проницаемая мембрана, которая отделяет цитоплазму ядра клетки от ядерного матрикса.Эта структура известна как ядерная оболочка; подобно плазматической мембране, он также состоит из липидного бислоя . Это двухслойная структура, которая окружает ядрышко и хроматин внутри ядерного матрикса. Ядерная оболочка является продолжением шероховатой эндоплазматической сети.

Теперь вы закончили изучать структуру ячейки. Используйте наши диаграммы и тесты для ячеек , чтобы закрепить свои знания!

В некоторых областях оболочки внутренний и внешний слои сливаются, образуя отверстия, известные как ядерные поры .Ядерные поры не только позволяют нуклеотидам и другим материалам проникать в ядро, но также позволяют м-РНК покидать ядро ​​для трансляции в цитоплазме.

Различия между животными и растительными клетками

В заключение следует отметить, что клетки животных — не единственный существующий эукариотический тип клеток. Клетки растений также являются эукариотическими и имеют компоненты, аналогичные компонентам клеток животных. Однако есть некоторые существенные отличия.В то время как клетки животных имеют более неправильную форму, клетки растений часто имеют фиксированную прямоугольную форму . Этой фиксированной форме способствует жесткая клеточная стенка на основе целлюлозы, которая окружает плазматическую мембрану растительной клетки; который также отсутствует в клетках животных.

Помимо митохондрий для производства АТФ, растительные клетки также содержат хлоропластов . Эти структуры позволяют растениям использовать ультрафиолетовую энергию в процессе фотосинтеза для производства собственной пищи.Наконец, хотя большое количество клеток животных может быть снабжено ресничками, эти структуры часто отсутствуют в большинстве типов клеток растений.

Клиническое значение

Гибель клеток

Клетки существуют по всему телу и работают синергетически, чтобы выполнять свои функции. Эти клетки претерпевают митотические (и мейотические) трансформации гонад, чтобы поддерживать клеточную популяцию. Когда клетка подвергается воздействию стрессового стимула, она обычно пытается адаптироваться к этой среде до тех пор, пока стимул не будет устранен.Как только клетка не получает смягчающих повреждений, она обычно восстанавливается и возвращается в нормальное состояние. Однако, если клетка существенно повреждена и повреждение становится необратимым, клетка может подвергнуться запрограммированной гибели клетки — процессу, известному как апоптоз. Апоптоз — это естественный контролируемый клеточно-опосредованный процесс, при котором поврежденная или изношенная клетка подвергается аутофагоцитозу. Существует еще одна форма незапланированной гибели клеток, которая может привести к большему повреждению соседних клеток, известная как клеточный некроз .Здесь смерть клетки следует за внешним агентом (например, травмой, инфекциями или токсинами), который инициирует преждевременную смерть клетки.

В некоторых случаях генетический материал может кодировать мутацию в результате воздействия вредного стимула, наследования ошибочного кодирования или просто из-за ошибки репликации, которая «отключает» важные хозяйственные функции клетки. . Это одно из явлений, наблюдаемых в злокачественных клетках . Есть несколько отличительных черт раковых клеток, в том числе способность этих клеток распространяться на отдаленные участки и расти на (метастаз) , инициировать ангиогенез (создание новых кровеносных сосудов для улучшения их кровоснабжения) и, что более важно, клетки «Бессмертный» .В то время как клетки (хотя и трудно) могут быть убиты несколькими фармакологическими, радиологическими и иммунологическими агентами, врожденная апоптотическая конфигурация клеточной линии подавляется. Хотя эти клетки обладают несколькими качествами, которые могут инициировать апоптоз в нормальной клеточной линии, эти клетки будут расти и воспроизводиться с неконтролируемой скоростью, потому что они каким-то образом способны избежать запрограммированной гибели клеток.

Изменения сотовой связи

Есть некоторые термины, которые конкретно связаны с изменениями на клеточном уровне, которые являются обычным явлением в области медицины.Таким образом, их следует ценить, чтобы следить за обсуждениями патологических процессов:

  • Гиперплазия означает увеличение размера органа в результате увеличения количества клеток в нем. Например, при доброкачественной гиперплазии предстательной железы количество клеток простаты увеличивается, что приводит к увеличению общего размера железы. Однако общий размер ячеек остается прежним.

  • Гипертрофия , с другой стороны, относится к увеличению размера органа после увеличения размера составляющих его клеток.Подумайте о процессе гипертрофии левого желудочка, когда сердечные миоциты увеличиваются в размере после хронического увеличения общего периферического сопротивления. Однако, в отличие от гиперплазии, количество клеток обычно остается неизменным.

  • Метаплазия — это обратимый процесс, при котором один тип зрелых клеток заменяется другим типом зрелых клеток. Хороший пример этого можно найти в дистальном отделе пищевода у пациентов с хроническим желудочно-пищеводным заболеванием (т.е. Пищевод Барретта). В этом случае хроническое воздействие на эпителий плоскоклеточного типа разъедающих желудочных кислот способствует клеточному превращению в клетки столбчатого типа, которые являются более устойчивыми. Когда стимул будет удален, клеточная линия вернется в свое предыдущее состояние. Это не считается прямым родственником злокачественных поражений.

  • Дисплазия говорит о пролиферации незрелых клеточных линий и снижении распространенности зрелой клеточной линии, резидентной в этом анатомическом месте.Это наблюдается при цервикальной интраэпителиальной неоплазии, когда аномальная клеточная линия еще не вторглась в базальную мембрану. Это считается предвестником злокачественных новообразований.

Источники

Артикул:

  • Ерощенко, Виктор П. и Мариано С. Х. ди Фьоре: Атлас гистологии с функциональными корреляциями Дифьоре. 10-е изд. Филадельфия: Wolters Kluwer Health / Lippincott Williams & Wilkins, 2008. Печать.
  • Эрнандес-Верден, Даниэль: «Ядрышко: от структуры к динамике». Гистохимия и клеточная биология 125.1-2 (2005): 127-137. Интернет. 3 октября 2016 г.
  • Кумар, Винай и др.: Роббинс и Котран Патологическая основа болезни. 9 изд. Филадельфия, Пенсильвания: Elsevier Saunders, 2015. Печать.
  • Лоу, С. В .: «Апоптоз при раке». Канцерогенез 21.3 (2000): 485-495. Интернет. 5 октября 2016 г.
  • Макэвой, Майкл.: «Мутации генов PEMT: холин и фосфолипиды — метаболическое исцеление». Метаболическое исцеление. N.p., 2015. Web. 3 октября 2016 г.
  • Миронов А.А. и Маргит Павелка .: Аппарат Гольджи. Вена: Springer, 2008. Печать.
  • «Молекулярные выражения клеточной биологии: клеточное ядро» . Micro.magnet.fsu.edu. N.p., 2015. Web. 3 октября 2016 г.
  • «Строения и функции микротрубочек» . Ruf.rice.edu. N.p., 2016. Web.3 октября 2016 г.

Иллюстраторы:

Эукариотическая клетка: структура и органеллы: хотите узнать об этом больше?

Наши увлекательные видео, интерактивные викторины, подробные статьи и HD-атлас помогут вам быстрее достичь лучших результатов.

С чем вы предпочитаете учиться?

«Я бы честно сказал, что Kenhub сократил мое учебное время вдвое». — Подробнее. Ким Бенгочеа, Университет Реджиса, Денвер

© Если не указано иное, все содержимое, включая иллюстрации, является исключительной собственностью Kenhub GmbH и защищено немецкими и международными законами об авторских правах.Все права защищены.

Организация типов клеток (Раздел 1, Глава 8) Нейронауки в Интернете: Электронный учебник для нейронаук | Кафедра нейробиологии и анатомии

8.1 Введение в нейроны и глиальные клетки

По оценкам, нервная система человека состоит примерно из 360 миллиардов неневральных глиальных клеток и 90 миллиардов нервных клеток. Кроме того, существуют сотни различных типов нейронов, основанных только на морфологии. Часто похожие нейроны обладают совершенно разными свойствами.Например, они используют разные нейротрансмиттеры и реагируют на них. В этом разделе рассматриваются клеточные компоненты нервной ткани. Студенты должны уметь описывать нейроны и глию, их морфологические компоненты, видимые в световой и электронный микроскоп, а также некоторые из фундаментальных функциональных ролей, которые эти типы клеток играют в нервной системе.

8.2 Модель Neuron

Рисунок 8.1
Нажмите на части модельного нейрона, чтобы просмотреть структуры.

Изучив модель нейрона выше, узнайте больше о функциях каждой структуры, нажав на список ниже.

  1. Cell Soma
  2. Дендрит
  3. Начальный сегмент и аксонный холм
  4. Аксон
  5. Нервные окончания
  6. Нервно-мышечное соединение

8.3 Клеточная сома

Щелкните идентифицированные структуры на модельном нейроне, чтобы перейти к соответствующему разделу.

Область нейрона, содержащая ядро, известна как тело клетки , сома или перикарион (рис. 8.2). Тело клетки — это метаболический центр нейрона.

Внутренняя часть сомы состоит из цитоплазмы, геля внутри микротрабекулярной решетки, образованной микротрубочками и связанных с ними белков, которые составляют цитоскелет .

Энергетический метаболизм и синтез макромолекул, используемых клеткой для поддержания своей структуры и выполнения своей функции, являются основными видами деятельности нейрональной сомы.Как описано в главе 6, он также действует как рецептивная область для синаптических входов от других клеток. В цитоплазму нейронов встроены органеллы, общие для других клеток, ядро ​​ , ядрышко , эндоплазматическая сеть , аппарат Гольджи , митохондрии , рибосомы , лизосомы и , эндосомы Пероксисомы . Многие из этих клеточных включений отвечают за экспрессию генетической информации, контролирующей синтез клеточных белков, участвующих в производстве энергии, росте и замене материалов, потерянных в результате истирания.

Рис. 8.2 (См. Увеличенное изображение)
Схематическое изображение тела клетки нейрона или перикариона с акцентом на эндоплазматический ретикулум, аппарат Гольджи и цитоскелет. Наведите курсор на изображение, чтобы определить органеллы.

8.4 Дендриты

Щелкните идентифицированные структуры на модельном нейроне, чтобы перейти к соответствующему разделу.

Мембрана нейрона действует как рецептивная поверхность на всем протяжении; однако специфические входные данные (так называемые афференты) от других клеток принимаются в основном на поверхности тела клетки и на поверхности специализированных отростков, известных как дендриты. Дендритные отростки могут широко разветвляться и часто покрыты выступами, известными как дендритных шипов . Шипы обеспечивают огромное увеличение площади поверхности, доступной для синаптических контактов.Дендритные отростки и шипы нейронов по существу представляют собой расширения цитоплазмы, содержащие большинство органелл, обнаруженных в теле клетки. Дендриты содержат многочисленные упорядоченные массивы микротрубочек и меньше нейрофиламентов (см. Ниже). Белки, связанные с микротрубочками (MAP) в дендрите, имеют более высокий молекулярный вес, чем белки, обнаруженные в аксоне. Примером является MAP2. Кроме того, микротрубочки в дендритах имеют свои положительные концы по направлению к соме клетки. Митохондрии часто расположены продольно. Шероховатый эндоплазматический ретикулум и рибосомы присутствуют в больших, но не в маленьких дендритах. Форма и протяженность «дендритного дерева» отдельного нейрона указывают на количество и разнообразие информации, полученной и обработанной этим нейроном. Дендритные шипы часто содержат микрофиламентов , которые представляют собой цитоскелетный элемент , ответственный за изменения формы шипов, наблюдаемые в некоторых примерах синаптической пластичности.

Рисунок 8.3 (См. Увеличенное изображение)
Схематическое изображение дендрита нейрона, подчеркивающее области контакта других афферентных входов к нейрону.

Информация принимается дендритом через массив рецепторов на поверхности дендрита, которые реагируют на передатчики, высвобождаемые из окончаний аксонов других нейронов. Дендриты могут состоять из одного ответвления от сомы или разветвленной сети, способной принимать входные данные от тысяч других клеток.Например, средний мотонейрон спинного мозга с дендритным деревом среднего размера получает 10 000 контактов, из которых 2 000 находятся на соме и 8 000 — на дендритах.

8.5 Начальный сегмент и аксонный холм

Щелкните идентифицированные структуры на модельном нейроне, чтобы перейти к соответствующему разделу.

Конусообразная область тела клетки, где берет начало аксон, называется аксоном бугорком .Эта область свободна от рибосом, и большинства других клеточных органелл, за исключением цитоскелетных элементов и органелл, которые транспортируются вниз по аксону. Нейрофиламенты в бугорке аксона собираются вместе в пучки. Область между бугорком аксона и началом миелиновой оболочки известна как начальный сегмент . Во многих случаях эта область является анатомическим местом инициации потенциала действия.Область под аксолеммой в этой области имеет материал, который темнеет при просмотре с помощью ЭМ. Эта область показана на рисунке 8.4. На самом дальнем конце аксона и его коллатералах есть небольшие ответвления, кончики которых представляют собой пуговичные цитоплазматические увеличения, называемые концевыми бутонами или нервными окончаниями .

Рис. 8.4 (см. Увеличенное изображение)
Схематическое изображение начального сегмента нейрона с выделением областей, в которых инициируется потенциал действия.

8,6 Аксон

Щелкните идентифицированные структуры на модельном нейроне, чтобы перейти к соответствующему разделу.

Другой тип процесса в идеализированном нейроне — аксон. Каждый нейрон имеет только один аксон, и он обычно более прямой и гладкий, чем дендритные профили. Аксоны также содержат пучки микротрубочек и нейрофиламентов и разбросанных митохондрий .Большинство MAP в аксоне имеют более низкий молекулярный вес, чем в дендрите. Преобладающим MAP в аксонах является tau . Микрофиламенты внутри аксона обычно связаны с областью, прилегающей к плазмалемме, и часто являются наиболее плотными в узлах Ranvier . За пределами начальных сегментов аксоплазма лишена грубого эндоплазматического ретикулума и свободных рибосом. Ветви аксонов известны как axon collaterales . Сам аксон часто окружен мембранным материалом, называемым миелиновой оболочкой, образованным глиальными клетками.Миелиновая оболочка действует для изоляции плазмалеммы аксона таким образом, что требует более быстрого распространения деполяризации плазмалеммы и увеличивает скорость проведения нервного импульса (см. Главу 3).

Рис. 8.5 (см. Увеличенное изображение)
Схематическое изображение аксона с акцентом на области микротрубочек, нейрофиламентов, проходящих внутри цитоплазмы.

8,7 Нервное окончание

Щелкните идентифицированные структуры на модельном нейроне, чтобы перейти к соответствующему разделу.

Часть плазматической мембраны нервного окончания, которая специализируется на формировании функциональных контактов с другими клетками, — это синапс .

Когда нейроны взаимодействуют с мышечными волокнами, область функционального контакта называется нервно-мышечным соединением или двигателем замыкательной пластиной (глава 4).Согласно классическому определению синапса, когда нерв , , , заканчивающийся синапсом на дендрите или соме второго нейрона, называется либо аксодендритом , либо аксосоматическим синапсом соответственно (Глава 7). Однако почти все возможные комбинации пре- и постсинаптических элементов были обнаружены в центральной нервной системе. Эти различные типы синапсов обозначаются сочетанием названия структуры пресинаптического элемента с названием постсинаптической структуры.Например, когда передача информации происходит от аксона к аксону или от одного терминала к другому, задействованный синапс называется аксоаксоническим синапсом .

8.8 Клеточные элементы в типичном нервном окончании

Области функциональных контактов между нейронами (синапсами) имеют отличные морфологические характеристики. Хотя размер и форма бутонов отдельных нейронов сильно различаются, синапсы можно идентифицировать по наличию следующего:

  1. A пресинаптический комплемент мембраносвязанных синаптических везикул существует.Это сферические пузырьки в нервных окончаниях возбуждения, показанные на рис. 8.6. В тормозных нейронах синаптические пузырьки часто уплощены, как показано на рис. 8.7.
  2. Нервное окончание часто имеет скопления плотного материала в цитоплазме, непосредственно прилегающих к мембране на пре- и постсинаптической стороне соединения (они известны как пресинаптическая плотность или постсинаптическая плотность, соответственно). Этот плотный материал на пресинаптической стороне является считается местом прикрепления пузырьков.Плотный материал на постсинаптической стороне является местом, где преобладают рецепторные белки и каналы.
  3. Присутствует много митохондрий , особенно в нервном окончании; и
  4. Имеется отчетливая синаптическая щель или межклеточное пространство примерно 20-40 нм.
  5. Присутствует эндоплазматический ретикулум , который регулирует уровень Ca 2+ .
  6. Эндосомная мембрана , которая участвует в рециркуляции синаптических пузырьков.

8.9 Варианты конструкции

Существует множество разновидностей «модельного» нейрона, описанного выше. Важная модификация, которая происходит особенно в рецепторных нейронах, включает обозначение нейронного отростка как дендрита или как аксона. Классически аксон был идентифицирован как миелинизированный или немиелинизированный процесс, который передает сигналы от тела клетки. Классический вид дендрита представляет собой немиелинизированную трубку цитоплазмы, которая несет информацию к телу клетки.Однако это различие не распространяется на ВСЕ нейроны. Некоторые клетки имеют миелинизированный отросток, который передает сигналы телу клетки. Следовательно, морфологически «дендрит» и «аксон» могут быть неразличимы. Ни положение тела клетки, ни наличие или отсутствие миелина не всегда являются полезным критерием для понимания ориентации нейрона. Область инициирования импульса является более надежным ориентиром для понимания функционального фокуса клетки.Эта область аналогична начальному участку модельного нейрона, рассмотренному выше. Обычно волокно или отросток, который содержит начальный сегмент или триггерную зону, называют аксоном. Обратите внимание, как показано на рисунке 8.8, зона срабатывания не обязательно должна быть непосредственно рядом с телом ячейки.

Рисунок 8.8
Сравнение вариаций структуры нейронов

8.10 Именование нейронов

Для классификации и наименования нейронов разработано множество соглашений. Один из старейших, разработанный Гольджи в конце 1800-х годов, основан на сложности дендритного дерева нейрона. Благодаря этому подходу клетки классифицируются на униполярные, биполярные и мультиполярные нейроны, как показано на рис. 8.8. Униполярные клетки имеют только один клеточный отросток и в основном встречаются у беспозвоночных. Однако сенсорные нейроны позвоночных — еще одна форма этого типа клеток.Поскольку эти клетки начинают свое развитие как биполярные нейроны, а затем становятся униполярными по мере созревания, их называют псевдо-униполярными клетками . Биполярные клетки присутствуют в сетчатке и обонятельной луковице . Мультиполярные клетки составляют остальные типы нейронов и, следовательно, являются наиболее многочисленным типом. Они были далее подразделены на подкатегории клеток Гольджи типа II , которые представляют собой небольшие нейроны, обычно интернейроны, и клеток Гольджи типа I , которые являются большими мультиполярными нейронами.

Клетки

также названы по их форме (например, пирамидных клеток , показанных на рисунке 8.9) или по имени человека, который их первым описал (например, клетки Пуркинье , показанные на рисунке 8.10). Совсем недавно клетки были названы в соответствии с их функцией или содержащимся в них нейротрансмиттером (например, группы норадреналиновых клеток ЦНС, описанные в главе 12). Это описание возможно благодаря разработке гистохимических и иммуноцитохимических методов для специфической идентификации нейромедиатора типа , используемого нейронами.

Два варианта морфологии клеток. Слева находится пирамидальная ячейка, названная в честь ее характерной пирамидальной формы. Эта клетка выделяется в коре головного мозга. Справа — сома и дендриты клетки Пуркинье, обнаруженные в мозжечке и названные в честь ученого Пуркинье.

8.11 Органелл

Многие термины, используемые в этом разделе, определены ниже.

Аксолемма — это плазмалемма аксона.

Эндоплазматический ретикулум — это лабиринт, ограниченный мембраной участок в цитоплазме, где синтезируются липиды и образуются мембраносвязанные белки. В некоторых областях нейрона ER лишен рибосом и называется гладким ER. Гладкий ER участвует в буферизации Ca 2+ и в биосинтезе и рециклинге синаптических пузырьков, как будет обсуждаться в главе 10.

Эндосома — это мембранно-ограниченная органелла, которая переносит материалы, попавшие в организм в результате эндоцитоза, и передает их лизосомам и пероксисомам для деградации. Он также функционирует в нервном окончании, перерабатывая синаптические пузырьки.

Аппарат Гольджи представляет собой набор уложенных друг на друга органелл с гладкой поверхностью, связанных с мембраной, в которых модифицируются и сортируются белки и липиды, образующиеся в эндоплазматическом ретикулуме.

Лизосомы содержат ферменты, которые переваривают соединения, образующиеся внутри или вне клеток.Они участвуют в превращении белков в аминокислоты и гликогена в глюкозу, основное питательное вещество нейронов. Их ферменты действуют при кислом pH. Как будет описано ниже, они также служат везикулами для обратного транспорта от окончаний аксонов к соме. Многие лизосомы разлагаются до гранул липофусцина, которые накапливаются по мере старения организма и рассматриваются как отходы нейронов. Лизосомы образуются в результате отпочкования аппарата Гольджи. Они имеют различные формы и размеры, связанные с мембраной, от 250 до 700 нм в диаметре.

Микрофиламенты — это филаменты диаметром 7 нм, расположенные в виде парной спирали из двух нитей глобулярного актина. Микрофиламенты особенно заметны в синаптических окончаниях, в дендритных шипах и в ассоциации с аксолеммой.

Микротрубочки представляют собой трубчатые структуры диаметром от 20 до 25 нм, которые образуют рыхлые пучки вокруг ядра и воронки в основании аксональных и дендритных отростков, где они образуют параллельные массивы, распределенные в продольном направлении. Они состоят из димеров α- и β-субъединиц тубулина и содержат ассоциированные белки, известные как белки, ассоциированные с микротрубочками (MAPS).MAPS регулируют полимеризацию субъединиц тубулина с образованием микротрубочек. Димеры α- и β-субъединиц тубулина полимеризуются с образованием прото-филаментов, расположенных в виде спирали, так что 13 димерных субъединиц составляют каждый полный оборот α-спирали. Кроме того, микротрубочки не являются непрерывными, и каждая микротрубочка состоит из множества единиц размером 100 нм. Микротрубочки участвуют в аксоплазматическом транспорте (см. Ниже).

Митохондрии распространены повсеместно по цитоплазме всей нервной клетки и особенно многочисленны при пресинаптических специализациях.

Нейрофиламенты — это тип промежуточных волокон, обнаруженных в нервных клетках. Нейрофиламенты участвуют в поддержании формы и механической прочности нейрона. Хотя нейрональные нейрофиламенты классифицируются как промежуточные филаменты, их состав в нейронах отличается от состава других клеток. Они состоят из трех субъединиц, которые образуют трубочку диаметром 10 нм. Это нейрофиламент окрашивается тяжелым металлом, что позволяет визуализировать форму нейронов.Нейрофиламенты образуют рыхлые пучки вокруг ядра клетки и других органелл и воронки в основании аксональных и дендритных отростков, где они образуют параллельные массивы, распределенные в продольном направлении. Нейрофиламентов больше, чем микротрубочек в аксонах, тогда как микротрубочек больше, чем нейрофиламентов в дендритах. Именно нейрофиламенты модифицируются при болезни Альцгеймера с образованием нейрофибриллярных клубков.

Ядрышко находится в центре ядер всех нейронов.Это заметное, глубоко окрашенное сферическое включение размером около одной трети ядра. Ядрышко синтезирует рибосомную РНК, которая играет важную роль в синтезе белка.

Ядро нейрона большое и круглое, обычно расположено в центре. В некоторых клетках в ядре видны массы глубоко окрашивающего хроматина. Ядерная мембрана нейронов похожа на мембрану других клеток — это двойная мембрана, перемежающаяся порами (ядерными порами), которые участвуют в ядерно-цитоплазматических взаимодействиях.Ядро нейронов имеет сферическую форму и имеет диаметр от 3 до 18 микрометров в зависимости от размера нейрона. Нейроны с длинными аксонами имеют более крупное тело и ядро ​​клетки. Как и в других клетках, основным компонентом ядра является дезоксирибонуклеиновая кислота (ДНК), вещество хромосом и генов.

Пероксисомы — это небольшие мембраносвязанные органеллы, которые используют молекулярный кислород для окисления органических молекул. Они содержат некоторые ферменты, которые либо производят, либо разлагают перекись водорода.

Плазмалемма нейрона представляется в электронном микроскопе как типичная двухслойная клеточная мембрана толщиной примерно 10 нм.

Постсинаптическая плотность — это темный материал постсинаптической клетки, прилегающей к синапсу. Рецепторы, ионные каналы и другие сигнальные молекулы, вероятно, связаны с этим материалом.

Пресинаптическая плотность — это область темного окрашиваемого материала пресинаптической мембраны, где, как предполагается, синаптические везикулы состыковываются перед слиянием с пресинаптической мембраной.

Рибосомы — это частицы, состоящие из рибосомальной РНК и рибосомного белка, которые связываются с мРНК и катализируют синтез белков. Когда рибосомы прикреплены к внешним мембранам ER, органелла называется грубым ER. Грубый ER в пластинках с вкраплениями рибосом виден в световой микроскоп как вещество Ниссля. В световых микроскопических препаратах внешний вид вещества Ниссля варьирует в разных типах нейронов. Он может иметь вид густо окрашенных овоидов, тонкодисперсных частиц или скоплений гранул.

Синапс — это соединение, которое позволяет сигналам проходить от нервной клетки к другой клетке или от одной нервной клетки к мышечной клетке. Синаптическая щель — это промежуток между мембраной пре- и постсинаптической клетки. В химическом синапсе сигнал переносится диффузионным нейромедиатором. Щель между пресинаптической клеткой и постсинаптическими клетками имеет ширину от 20 до 40 нм и может казаться прозрачной или полосатой. Недавние исследования показали, что расщелина сама по себе не является пустым пространством, а заполнена углеводосодержащим материалом.

Синаптические пузырьки — это небольшие сферические органеллы в цитоплазме нейронов, которые содержат нейромедиатор и различные белки, необходимые для секреции нейромедиатора. Везикулы, содержащие тормозной нейромедиатор, часто бывают плоскими или эллиптическими, тогда как везикулы, содержащие возбуждающий нейромедиатор, обычно более сферические.

8.12 Глиальные клетки и функции

Рисунок 8.11
Типы нейроглии.Нажмите на разные глиальные клетки, чтобы просмотреть детали их структуры и функции.

Самыми многочисленными клеточными составляющими центральной нервной системы являются ненейрональные, нейроглиальные («нервный клей») клетки, которые занимают пространство между нейронами. Было подсчитано, что существует примерно 360 миллиардов глиальных клеток, которые составляют 80-90% клеток ЦНС. В этом разделе будут рассмотрены общие классификации нейроглиальных клеток и описаны некоторые общие свойства, которые отличают нейроглию от нейронов.

Нейроглия отличается от нейронов в нескольких общих чертах тем, что они

  1. не образуют синапсов,
  2. имеют по существу только один тип процесса,
  3. сохраняют способность делить, а
  4. менее возбудимы, чем нейроны.

Нейроглии классифицируются по размеру и форме их ядра и отличаются от нейронов на световом микроскопическом уровне. Щелочные (основные) красители используются для выявления морфологии ядра.Кроме того, используются несколько металлических красителей, показывающих форму клетки и архитектуру цитоплазмы. Характеристики ядер, включая размер, форму, интенсивность окрашивания и распределение хроматина, используются для различения типов клеток в патологическом материале. Также используются характеристики тела клетки, включая размер, форму, расположение, структуру ветвления и плотность отростков.

Нейроглия делится на две основные категории в зависимости от размера: макроглия , и микроглия.Макроглия имеет эктодермальное происхождение и состоит из астроцитов , олигодендроцитов и эпендимальных клеток . Клетки Microglia , вероятно, мезодермального происхождения. Сравнение различных типов нейроглии показано на рисунке 8.11.

8,13 Макроглии

Щелкните глиальную клетку, чтобы перейти к соответствующему разделу.

Существует три типа макроглии: олигодендроглия, эпендима и астроциты.В этом разделе обсуждаются два типа астроцитов: протоплазматические и фиброзные.

8.14 Протоплазматические астроциты

Протоплазматические астроциты находятся в основном в сером веществе. Со специфическими пятнами серебра или глии их клеточные тела и процессы очень нерегулярны. Эти отростки могут быть большими или очень мелкими, иногда образующими листы, которые проходят между аксонами и дендритами и могут даже окружать синапсы.Эти тонкие пластинчатые отростки придают телу протоплазматической клетки астроцита «нечеткий» или мутный вид под световым микроскопом. В цитоплазме можно увидеть пучки тонких фибрилл. Ядро протоплазматического астроцита имеет эллипсоидную или бобовидную форму с характерными пятнами хроматина. Отмечены определенные типы межклеточных контактов между отростками протоплазматических астроцитов. Они, вероятно, опосредуют ионный обмен между клетками.

8.15 Волокнистые астроциты

Волокнистые астроциты обнаруживаются в основном в белом веществе, имеют более гладкий контур клеточного тела, чем протоплазматические астроциты, как видно из глиальных пятен, и имеют отростки, которые имеют тенденцию выходить из тела клетки радиально.Эти отростки более узкие и разветвляются, образуя концы на кровеносных сосудах, эпендиме и мягкой мозговой оболочке. Следовательно, отростки фиброзных астроцитов не образуют листов и не имеют тенденции соответствовать форме окружающих нейронов или сосудистых элементов. Основной отличительной чертой фиброзных астроцитов, как следует из названия, является обилие глиальных фибрилл, расположенных параллельными рядами в цитоплазме и простирающихся в отростки.

При окрашивании по Нисслю фиброзные астроциты имеют ядро ​​, по существу такое же, как у протоплазматического типа, с пятнистым внешним видом.Межклеточные соединения также наблюдались между фиброзными астроцитами.

Рис. 8.14
Астроцит с концевым питанием, выступающим на поверхность нейронов, кровеносных сосудов, эпендимы и мозговых оболочек. Ни один астроцит не проецировался бы на все эти структуры.

Оба типа астроцитов поддерживают работу нейронов в непосредственной близости от них.Они обеспечивают физический барьер между клетками, поддерживают ионное и pH-равновесие внеклеточного пространства вокруг нейронов и постоянно изменяют химическую среду соседних клеток. Как показано на рис. 8.14, астроциты образуют сплошную выстилку вокруг внешней поверхности ЦНС ( глиальных лимитанов, ) и кровеносных сосудов ( периваскулярных стоп, ). Во время развития они образуют каркас, по которому нервные клетки мигрируют, чтобы достичь своей зрелой структуры. Во время травмы астроциты пролиферируют и фагоцитируют мертвых клеток.Это часто приводит к образованию глиального рубца .

В дополнение к этим общим функциям, астроциты также действуют более специализированными способами, облегчая функцию нейронов. Они метаболизируют нейротрансмиттеры, удаляя их из синаптической щели. Например, глутамат аминокислоты поглощается астроцитами и инактивируется путем преобразования в глутамин. Затем глутамин транспортируется в нейрон для повторного синтеза в глутамат (см. Главу 13). Более свежие данные указывают на то, что астроциты могут резко изменять размер как часть физиологической регуляции нейрональной среды.Эти функции будут обсуждаться в следующих разделах.

8,16 Олигодендроглии

Щелкните глиальную клетку, чтобы перейти к соответствующему разделу.

Олигодендроциты также расположены как в сером, так и в белом веществе. Это преобладающий тип клеток в белом веществе, где они часто располагаются в виде рядов клеток между группами нейрональных отростков. Они называются межпучковыми , , , олигодендроглиями, и участвуют в образовании и поддержании миелина, окружающего нейрональные отростки поблизости.В сером веществе олигодендроглии обычно располагаются около нейронов и, следовательно, известны как перинейрональные сателлитные клетки . Клеточные тела олигодендроглии часто располагаются вблизи капилляров, но у них отсутствуют определенные периваскулярные концевые ножки, характерные для астроцитов.

Отростки олигодендроцитов меньше и более тонкие, чем астроциты, а форма тела клетки от многоугольной до сферической. Ядро олигодендроцита меньше ядра астроцита, эксцентрично расположено в теле клетки, содержит сгустки хроматина и может окрашиваться щелочными красителями.Цитоплазма олигодендроцитов имеет тенденцию быть темнее, чем у астроцитов с серебряными пятнами, и не содержит глиальных фибрилл (хотя они действительно содержат микротрубочек ).

Роль олигодендроглии в центральной нервной системе, особенно межпучковых олигодендроцитов , заключается в образовании и поддержании миелина. Миелин — это оболочка из мембранного материала, описанная доктором Бирном, которая обертывает аксон нейрона, как показано на рисунке 8.15 для облегчения проведения потенциала действия посредством скачкообразной проводимости. Миелин состоит из концентрических слоев мембран, уплотненных друг относительно друга с внутренним (то есть против нервного волокна) и внешним воротником цитоплазмы. Как показано на рис. 8.15, один олигодендроцит способствует миелинизации нескольких соседних нервных отростков. Более того, более одного олигодендроцита вносят вклад в миелинизацию одного междоузлия аксона.Пластинки миелиновых мембран являются результатом спирального обертывания аксона цитоплазматическими отростками межпучковой олигодендроглии. Кроме того, олигодендроцит, образующий конкретный миелин , , , междоузлия, (то есть миелин между двумя узлами), редко можно увидеть непосредственно рядом с обернутым миелином отростком. Это связано с тем, что тонкие цитоплазматические мостики соединяют область тела клетки олигодендроцита с внешней оболочкой миелина. Важно отметить, что область аксона, обнаженная в узле Ранвье , не голая.Это может быть место ветвления аксона, место синаптических контактов или оно может быть покрыто различными глиальными отростками. Аксон в узловой области обычно содержит скопления органелл, особенно митохондрий .

В периферической нервной системе (ПНС) шванновских клеток ответственны за образование миелина. Эти клетки миелинизируют аксоны иначе, чем межпучковые олигодендроглии. Как показано на рис. 8.16, они мигрируют вокруг аксона, закладывая мембрану, покрывающую аксон, выдавливая цитоплазму шванновской клетки.Кроме того, каждое междоузлия аксона ПНС представляет собой одну шванновскую клетку. Кроме того, немиелинизированные аксоны в ПНС также окружены мембранами, образованными шванновскими клетками.

Рис. 8.16.
Схематическое изображение того, как отдельные шванновские клетки миелинизируют каждую межузловую область.

Просмотр ЭМ ячейки Шванна.

8,17 Эпендима

Щелкните глиальную клетку, чтобы перейти к соответствующему разделу.

Эпендимальные клетки происходят из зародышевого эпителия ранней выстилки, выстилающего просвет нервной трубки и, таким образом, также являются эктодермальными производными (наряду с нейронами, астроцитами и олигодендроцитами). Эпендимные клетки выстилают желудочков, головного мозга и центральный канал спинного мозга спинного мозга . Они расположены в виде однослойного столбчатого эпителия и имеют многие гистологические характеристики простого эпителия, которые варьируются от плоского до кубовидного в зависимости от их расположения.Эпендима, образующая слизистую оболочку желудочка, не соединяется с базальной пластиной , а опирается непосредственно на нижележащую нервную ткань. Как показано на рис. 8.17, поверхность, обращенная к желудочку, содержит множество микроворсинок и ресничек . Эти реснички перемещают спинномозговой жидкости ( CSF ) в желудочков . Боковые границы эпендимных клеток относительно прямые и образуют стыки с соседними клетками.

Эпендимные клетки видоизменяются в различных областях желудочков в слои кубовидного эпителия, которые действительно лежат на базальной мембране (образованной выростом мягкой мозговой оболочки) над богатым слоем сосудистой сети и соединительной ткани. Это сосудистая оболочка plexus , изученная в лаборатории, которая отвечает за секрецию, поглощение и транспортировку веществ в спинномозговую жидкость и из нее.

Рисунок 8.17
Схематическое изображение расположения эпендимных клеток, образующих ресничную выстилку желудочков.

Просмотрите слой эпендима.

8,18 Микроглия

Щелкните глиальную клетку, чтобы перейти к соответствующему разделу.

Микроглия, в отличие от других типов глиальных клеток, происходит из эмбриональной мезодермы .Они присутствуют во всей центральной нервной системе, но обычно незаметны в зрелой нормальной ткани и их трудно идентифицировать с помощью светового или электронного микроскопа. Их больше в сером веществе, и они могут поражать до 5-10% нейроглии в коре головного мозга.

По общему виду микроглия похожа на олигодендроциты, хотя они меньше и имеют волнообразные отростки с шиповидными выступами. Ядра микроглии имеют удлиненную или треугольную форму и глубоко окрашиваются щелочными красителями.

После повреждения нервной ткани микроглии размножаются и мигрируют к месту повреждения, где они очищают клеточный дебрис путем фагоцитоза . Реагирующие микроглии имеют набухшую форму с укороченными отростками и их трудно отличить от фагоцитов с периферии или мигрирующих периваскулярных клеток . Подсчитано, что по крайней мере одна треть фагоцитов, появляющихся в области поражения, имеет происхождение из ЦНС.

Проверьте свои знания

Какие из следующих типов клеток пролиферируют в ЦНС в ответ на повреждение? (Примечание: существует более одного правильного ответа.)

А. Нейроны

Б. Микроглия

C. Волокнистые астроциты

D. Протоплазматические астроциты

E. Макрофаги

Какие из следующих типов клеток пролиферируют в ЦНС в ответ на повреждение? (Примечание: существует более одного правильного ответа.)

A. Нейроны. Этот ответ НЕПРАВИЛЬНЫЙ.

Хотя в настоящее время это спорно, преобладающие данные указывают на то, что нейроны не подвергаются клеточному делению, когда они созревают во время развития организма.

Б. Микроглия

C. Волокнистые астроциты

D. Протоплазматические астроциты

E. Макрофаги

Какие из следующих типов клеток пролиферируют в ЦНС в ответ на повреждение? (Примечание: существует более одного правильного ответа.)

А. Нейроны

B. Microglia Ответ ПРАВИЛЬНЫЙ!

Микроглия как делится, так и мигрирует в области клеточного повреждения в центральной нервной системе в ответ на повреждение.

C. Волокнистые астроциты

D. Протоплазматические астроциты

E. Макрофаги

Какие из следующих типов клеток пролиферируют в ЦНС в ответ на повреждение? (Примечание: существует более одного правильного ответа.)

А. Нейроны

Б. Микроглия

C. Волокнистые астроциты. Ответ ПРАВИЛЬНЫЙ!

Как фиброзные, так и протоплазматические астроциты подвергаются клеточному делению в ответ на повреждение.

D. Протоплазматические астроциты

E. Макрофаги

Какие из следующих типов клеток пролиферируют в ЦНС в ответ на повреждение? (Примечание: существует более одного правильного ответа.)

А. Нейроны

Б. Микроглия

C. Волокнистые астроциты

D. Протоплазматические астроциты. Ответ ПРАВИЛЬНЫЙ!

Как фиброзные, так и протоплазматические астроциты подвергаются клеточному делению в ответ на повреждение.

E. Макрофаги

Какие из следующих типов клеток пролиферируют в ЦНС в ответ на повреждение? (Примечание: существует более одного правильного ответа.)

А. Нейроны

Б. Микроглия

C. Волокнистые астроциты

D. Протоплазматические астроциты

E. Макрофаги. Ответ ПРАВИЛЬНЫЙ!

Макрофаги появляются в ЦНС после травмы и работают вместе с глиальными клетками ЦНС, фагоцитируя остатки ЦНС.

Какой из следующих типов клеток отвечает за поддержание pH внеклеточного пространства ЦНС? (Примечание: существует более одного правильного ответа.)

А. Микроглия

Б. Волокнистые астроциты

С.Протоплазматические астроциты

D. Эпендимные клетки

E. Макрофаги

Какой из следующих типов клеток отвечает за поддержание pH внеклеточного пространства ЦНС? (Примечание: существует более одного правильного ответа.)

A. Microglia. Этот ответ НЕПРАВИЛЬНЫЙ.

Б. Волокнистые астроциты

C. Протоплазматические астроциты

Д.Эпендимные клетки

E. Макрофаги

Какой из следующих типов клеток отвечает за поддержание pH внеклеточного пространства ЦНС? (Примечание: существует более одного правильного ответа.)

А. Микроглия

B. Волокнистые астроциты. Ответ ПРАВИЛЬНЫЙ!

C. Протоплазматические астроциты

D. Эпендимные клетки

E.Макрофаги

Какой из следующих типов клеток отвечает за поддержание pH внеклеточного пространства ЦНС? (Примечание: существует более одного правильного ответа.)

А. Микроглия

Б. Волокнистые астроциты

C. Протоплазматические астроциты. Ответ ПРАВИЛЬНЫЙ!

D. Эпендимные клетки

E. Макрофаги

Какой из следующих типов клеток отвечает за поддержание pH внеклеточного пространства ЦНС? (Примечание: существует более одного правильного ответа.)

А. Микроглия

Б. Волокнистые астроциты

C. Протоплазматические астроциты

D. Эпендимные клетки. Этот ответ НЕПРАВИЛЬНЫЙ.

E. Макрофаги

Какой из следующих типов клеток отвечает за поддержание pH внеклеточного пространства ЦНС? (Примечание: существует более одного правильного ответа.)

А.Микроглия

Б. Волокнистые астроциты

C. Протоплазматические астроциты

D. Эпендимные клетки

E. Макрофаги. Этот ответ НЕПРАВИЛЬНЫЙ.

Сводная таблица прокариотических и эукариотических клеток и их функций — Принципы биологии

Компоненты и функции прокариотических и эукариотических клеток

Компонент ячейки Функция Присутствует в прокариотах Присутствует в клетках животных Присутствует в клетках растений
Плазменная мембрана Отделяет ячейку от внешней среды; контролирует прохождение органических молекул, ионов, воды, кислорода и отходов внутрь и из клетки Есть Есть Есть
Цитоплазма Обеспечивает структуру ячейки; место многих метаболических реакций; среда, в которой находятся органеллы Есть Есть Есть
Нуклеоид Расположение ДНК Есть
Ядро Клеточная органелла, содержащая ДНК и направляющая синтез рибосом и белков Есть Есть
Рибосомы Синтез белка Есть Есть Есть
Митохондрии Производство АТФ / клеточное дыхание Есть Есть
Пероксисомы
Окисляет и расщепляет жирные кислоты и аминокислоты, выводит токсины и токсины Есть Есть
Пузырьки и вакуоли
Хранение и транспортировка; пищеварительная функция в растительных клетках Есть Есть
Центросома
Роль неуточненных в делении клеток в клетках животных; центр организации микротрубочек в клетках животных Есть
Лизосомы
Переваривание макромолекул; переработка изношенных органелл Есть
Клеточная стенка
Защита, структурная поддержка и поддержание формы ячеек Да, в первую очередь пептидогликан у бактерий, но не у архей Да, в основном целлюлоза
Хлоропласты Фотосинтез Есть
Эндоплазматическая сеть Модифицирует белки и синтезирует липиды Есть Есть
Аппарат Гольджи

Изменяет, сортирует, маркирует, упаковывает и распределяет липиды и белки Есть Есть
Цитоскелет

Поддерживает форму клетки, удерживает органеллы в определенных положениях, позволяет цитоплазме и пузырькам перемещаться внутри клетки и позволяет одноклеточным организмам двигаться независимо Есть Есть Есть
Жгутик

Передвижение по клетке Некоторые Некоторые Нет, за исключением спермы некоторых растений.
Реснички

Клеточное движение, движение частиц по внеклеточной поверхности плазматической мембраны и фильтрация Некоторые

Таблица 1 Компоненты прокариотических и эукариотических клеток и их соответствующие функции.

Если не указано иное, изображения на этой странице лицензированы OpenStax в соответствии с CC-BY 4.0.

Текст адаптирован из: OpenStax, Концепции биологии.OpenStax CNX. 18 мая 2016 г. http://cnx.org/contents/[email protected]

Лаборатория 2 — структура и функции клеток — Научная лаборатория — BIOL 2031 — Человек

ПРЕДВАРИТЕЛЬНЫЕ ВОПРОСЫ

  1. Каковы функциональные требования жизни? Функциональные требования к жизни следующие:

    • Механизм
    • Отзывчивость
    • Дыхание / обмен веществ
    • Репродукция
    • Экскреция
  2. Используя таблицу 1, определите основные сходства и различия между прокариотическими и эукариотические клетки.

      а. Отличия:
       o Прокариоты лишены мембраносвязанного ядра и мембраносвязанного
          органеллы.
       o У эукариот есть определенное ядро ​​и мембраносвязанные органеллы.
       o Прокариоты более простые, а эукариоты более сложные.
       o У эукариот больше органелл
    б. Сходства
       o оба имеют похожую структуру.
          o ДНК / генетический материал
          o цитоплазма
          o клеточная мембрана
          o Рибосомы  
  3. Где находится ДНК в прокариотической клетке? Где он находится в эукариотической клетке? o В прокариотической клетке ДНК находится в цитоплазме

    .
      область нуклеоида (поскольку ядра нет)  

    o В эукариотической клетке большая часть ДНК находится в ядре

  4. Сравните и сопоставьте роль секреторных пузырьков, лизосомы и пероксисомы.Роли секреторных пузырьков, лизосомы и пероксисомы имеют сходство и различия. o Все они представляют собой мембраносвязанные органеллы меньшего размера. o Их основная функция и содержание различаются. o Лизосомы имеют решающее значение для внутриклеточного пищеварения; содержимое выпущено в вакуоль для уничтожения и переваривания бактерий o Основная функция пероксисом — защита клетки от водорода. перекись, которую он создает, расщепляя его на воду и кислород o Секреторные везикулы упаковывают секрецию клеток в теле Гольджи, а затем транспортируется на поверхность клетки для выпуска

  5. Определите три структуры, которые обеспечивают поддержку и защиту в эукариотической клетке.а. Три структуры, обеспечивающие поддержку и защиту эукариотической клетки

      это:
       я. Клеточная мембрана  

    ii. Клеточная стенка (вне клеточной мембраны) iii. Микротрубочки (в цитоскелете)

ЭКСПЕРИМЕНТ 1: СТРУКТУРА И ФУНКЦИЯ КЛЕТКИ

Вопросы после лабораторных работ

  1. Определите A и B на изображении ниже на слайде.

Кончик корня лука, 1000x.

A: ____ A указывает на хромосомы __

B: ____ B указывает на темный кружок, который представляет собой ядро ​​ клеток _____

  1. Какие компоненты эукариотической клетки были видны на кончике корня лука? Который компонентов не было? Как вы думаете, почему некоторые компоненты были более заметными, чем другие?

а.В эукариотической клетке видимые компоненты включают: Клеточная стенка, цитоплазма, ядро ​​и хромосомы б. В эукариотической клетке невидимые компоненты включают: Митохондрии, тельца Гольджи и рибосомы c. Некоторые компоненты были более заметны, чем другие, потому что они были темнее, чем другие части. Некоторые компоненты были полупрозрачными и не были видны в микроскоп

ЭКСПЕРИМЕНТ 2: ИССЛЕДОВАНИЕ РАЗМЕРА КЛЕТКИ 6565

Таблицы данных

Таблица 2: Результаты эксперимента с соотношением площади поверхности к объему

Размеры блока Площадь поверхности (см 2 ) Объем (см 3 ) Время полного изменения цвета, необходимое для расстояния диффузии

1 см × 1 см × 1 см 6 см 2 1 см 3 полного изменения цвета не произошло 0.42см

1 см × 2 см × 2 см 16 см 2 4 см 3 без полного цвета Произошло изменение

0,4 см

1 см × 1 см × 6 см 26 см 2 6 см 3

нет полного цвета произошло изменение 0,4 см

Пост-лабораторные вопросы

  1. Как площадь поверхности влияет на диффузию из блока? А как насчет объема? Какие о соотношении площади поверхности к объему?

    • Чем больше площадь поверхности, тем больше времени требуется для диффузии.Том также имел положительная корреляция относительно времени распространения.
    • По мере увеличения объема в кубах процент диффузии уменьшался
    • По мере уменьшения площади поверхности до объема время, необходимое для диффузии повысился. Когда объем увеличивается быстрее, чем площадь поверхности, скорость диффузия уменьшается, потому что площадь поверхности для входа меньше.
  2. Какой фактор больше всего повлиял на диффузию из блока? Фактором, оказавшим наибольшее влияние на диффузию, был максимальный размер блока.В время, отведенное для диффузии, меньший блок имел наибольший процент диффузии тогда как самый большой блок имел наименьший процент диффузии.

  3. Как этот эксперимент демонстрирует необходимость сохранения клеток меньшего размера? Эксперимент демонстрирует необходимость сохранения клеток меньшего размера, потому что это представляет концепцию большего блока с большей площадью поверхности и большего размера, принимая дольше рассеиваться. Если бы наши клетки стали слишком большими, и площадь поверхности не могла бы больше эффективно поддерживают объем клетки, поэтому клетка делится, чтобы сохранить меньший размер.

  1. Определите площадь поверхности, объем и отношение площади поверхности к объему для трех блоки ниже. Затем укажите, какой блок будет наиболее идеальной клеточной морфологией. Почему?
  • Первый блок o Площадь поверхности = 13,5 см 2 o Объем 3,375 см 3 o SA: V 4
  • Второй блок o Площадь поверхности = 12,5 см 2 o Объем 1,5 см 3 o SA: V 8.
  • Третий блок o Площадь поверхности = 32 см 2 o Объем 12см 3 o SA: V 2.
  • Второй блок был бы наиболее идеальной клеточной морфологией, потому что он имеет самое высокое отношение площади поверхности к объему.

Строение и функции — Рыбы

Внешняя анатомия рыб

Анатомия — это исследование структур организма. Рыбы бывают самых разных форм, многие из которых имеют особые модификации. Форма, размер и структура частей тела позволяют разным рыбам жить в разных средах или в разных частях одной среды. Внешняя анатомия рыбы может многое рассказать о том, где и как она живет.

При описании основной анатомии организма полезно иметь некоторые общие термины, которые помогут сориентироваться.Точно так же, как карта использует север, юг, восток или запад для определения местоположения, слова ориентации полезны при описании анатомии. Таблица 4.3 определяет общие анатомические термины, а рис. 4.18 показывает их ориентацию на трех разных животных.

Таблица 4.3. Слова позиции анатомии
Слово анатомии … организма
Передний Головка …
Задний Хвостовой конец…
Спинной Зад
брюшная Перед или брюшко
Боковое Бок или фланг

Ученые измеряют и описывают внешние особенности рыб для определения видов, оценки возраста и здоровья, а также изучения строения и функций. Для этого ученые работают с самыми разными видами рыб. Они могут использовать свежую рыбу, или они могут использовать фотографии, научные рисунки или другие подробные изображения — даже окаменелости рыб.

Один из способов задокументировать подробности о рыбе — gyotaku . Gyotaku (произносится как gee yo TAH koo ) — традиционный японский метод печати, при котором используется рыба целиком. Этот метод позволяет получить точное изображение рыбы (рис. 4.19).

Гётаку — относительно новый вид искусства, который развился в Японии, вероятно, в начале-середине девятнадцатого века. Gyotaku означает «протирание рыбы».’ Gyotaku ценится как с научной, так и с художественной точки зрения. Деталь, запечатленная в gyotaku , особенно в исторических гравюрах, является важным источником информации для ученых, которые хотят знать размер и внешние особенности рыб в прошлом. Цвет и художественное оформление гравюр gyotaku , выполненных опытными художниками, также делают их ценными произведениями искусства. Самый старый из известных гравюр gyotaku , сделанный в 1862 году, принадлежит Музею Хомма в Сакате, Япония.

Деятельность

Используйте свои навыки наблюдения и исследования, чтобы исследовать форму и функции рыб, экспериментируя со способами создания отпечатков рыб гётаку.

Форма тела

Окуни — самый распространенный вид костистых рыб. В результате люди часто используют слова , похожие на окуня, , чтобы описать общую форму рыбы. (Рис. 4.21 A). Веретенообразный — это научный термин, используемый для описания обтекаемого торпедообразного тела окуня. Compressiform означает сплющенный с боков (рис. 4.21 B). Депрессивная форма означает уплощение в дорсо-вентральном направлении (рис. 4.21 C). Угловидный означает угревидный (рис. 4.21 D). См. Таблицу 4.4 для дополнительных описаний форм тела рыб.


Таблица 4.4. Форма и функции рыбы: форма тела

Изображения Байрона Иноуэ

Плавники рыбные

Первые анатомические структуры, которые многие люди определяют на рыбах, — это плавники.Фактически, «придатки, если они есть, как плавники» — это часть одного из научных определений рыбы. У большинства рыб есть два вида плавников: срединный и парный.

Срединные плавники — это отдельные плавники, которые проходят по средней линии тела. Спинной плавник — это срединный плавник, расположенный на спинной стороне рыбы. Анальный и хвостовой плавники также являются срединными плавниками. Парные плавники расположены попарно, как руки и ноги человека. Брюшной и грудной плавники являются парными. (Таблица 4.5).

Таблица 4.5. Форма и функции рыбы: особенности спинного плавника

Изображения Байрона Иноуэ

Среднее ребро

Срединные плавники, как спинной, анальный и хвостовой плавники, могут функционировать как киль лодки и способствовать стабилизации (рис. 4.22 A). Срединные плавники могут также служить другим целям, например, для защиты у льва (рис. 4.22 B).

Хвостовой (хвостовой) плавник

Хвостовой плавник обычно известен как хвостовой плавник (Таблица 4.6). Это основной придаток, используемый для передвижения многих рыб. Хвостовой плавник также является средним плавником (рис. 4.22 A).

Хвостовой стебель — основание хвостового плавника. Стебель означает стебель, а на хвостовом стебле находятся сильные плавательные мышцы хвоста. Вместе хвостовой плавник действует как «пропеллер» для рыбы, а хвостовой стебель действует как двигатель.

Таблица 4.6. Форма и функции рыбы: особенности хвостового плавника

Изображения Байрона Иноуэ

Парные ребра

У рыб есть два набора парных плавников: грудные и тазовые (рис.4.25). Грудные плавники расположены вертикально и расположены по бокам рыбы, обычно сразу за жаберной крышкой (таблица 4.7). Грудные плавники похожи на человеческие руки, которые находятся рядом с грудными мышцами. Многие рыбы, такие как рифовые рыбы, такие как губаны (рис. 4.25 B), используют свои грудные плавники для передвижения.

Таблица 4.7. Форма и функции рыбы: особенности грудного плавника

Изображения Байрона Иноуэ

Тазовые плавники располагаются горизонтально на брюшной стороне рыбы, за грудными плавниками (Таблица 4.8). Тазовые плавники похожи на ноги. Точно так же, как человеческие ноги, тазовые плавники связаны с тазом рыбы.

Таблица 4.8. Форма и функции рыбы: особенности тазового плавника

Схема тазового плавника Описание Адаптированная функция
Присосковидные тазовые плавники Захват камней присасыванием
Утолщенные лучи на брюшных плавниках Сидя на подложке
Тазовые плавники среднего размера Передвижение

Уникальные и специализированные ласты

Парные плавники чаще всего используются для маневрирования, как и весла на весельной лодке.Однако и грудные, и брюшные плавники также могут быть узкоспециализированными, как у летучих рыб (рис. 4.26 A). Уникальные комбинации других плавников также могут помочь рыбам стать еще более специализированными, например грудные и анальные плавники коробчатой ​​рыбы (рис. 4.26 B; см. Таблицу 4.9).

Таблица 4.9 . Форма и функции рыбы: комбинации плавников

Комбинированная схема ребер Описание Адаптированная функция
Спинной и анальный плавники Модифицирован для увеличения тяги
Грудные и хвостовые плавники Модифицирован для парения в воздухе

Колючки и лучи

Ученые используют плавники, чтобы определять и классифицировать виды рыб.У более эволюционно продвинутых рыб плавники поддерживаются костными структурами: шипами и мягкими лучами. Колючки — простые неразветвленные конструкции. Мягкие лучи представляют собой сложные, сегментированные и разветвленные структуры (рис. 4.27).

Рот

Рот находится на переднем или переднем конце рыбы. Рот может многое рассказать о питании рыбы (таблица 4.10). Размер, форма и расположение рта в сочетании с типом зубов дают важную информацию о пищевых привычках рыб (Таблица 4.11).

Например, рыба с пастью на нижней части головы часто питается, закапывая донные отложения (рис. 4.28 A). Рыба с направленным вверх ртом обычно кормится в толще воды или даже над водой (рис. 4.28 B). Когда у рыбы открыт рот, передняя губа может выскользнуть изо рта вниз. Это скользящее движение рта может помочь рыбе создать вакуум и быстро засосать большой глоток воды, которая, надеюсь, также включает добычу!

Фиг.4.28. (A) Рот, обращенный снизу, указывает на предпочтения осетровых в кормлении снизу. (B) Рот, обращенный вверх, показывает приспособление арованы к поверхностному питанию.

Таблица 4.10. Форма и функции рыбы: особенности рта

Таблица 4.11. Форма и функции рыбы: особенности зубов

Глаза

Глаза рыб похожи на человеческие (рис. 4.29). В передней части каждого глаза находится линза, удерживаемая поддерживающей связкой.Объектив фокусирует изображения объектов на сетчатке. Чтобы сфокусировать близкие и далекие объекты, втягивающая мышца линзы перемещает линзу вперед и назад.

Сетчатка — это светочувствительная мембрана, богатая нервами, которые соединяются с зрительными долями мозга через зрительные нервы. Когда свет падает на нервы сетчатки, зрительные нервы , посылают импульсы в зрительные доли. Поскольку у рыб нет век, их глаза всегда открыты.

Некоторые эластожаберные и большинство костистых рыб обладают цветным зрением. Некоторые рыбы также могут видеть в ультрафиолетовом (УФ) свете. Ультрафиолетовое зрение особенно полезно для рифовых рыб. Ультрафиолетовое зрение помогает рыбам в поисках пищи, общении и выборе партнера.

Elasmobranch и некоторые костистые особи также имеют тапетум lucidum. Tapetum lucidum — это блестящая отражающая структура, которая отражает свет и помогает зрению в условиях низкой освещенности. tapetum lucidum — это то, что заставляет глаза акул и глубоководных рыб, а также наземных млекопитающих, таких как кошки и коровы, сиять ночью.

Рыбий глаз обычно располагается сверху рта и выше его. Как и рот рыбы, размер, форма и положение глаз могут дать информацию о том, где живет рыба и чем она питается. Например, у рыбных хищников глаза часто смотрят вперед, чтобы лучше воспринимать глубину. С другой стороны, у хищных рыб глаза часто располагаются по бокам тела. Это дает им большее поле зрения, чтобы избегать хищников. (Таблица 4.12).

Таблица 4.12. Форма и функции рыбы: особенности глаза

Ноздри

У некоторых рыб хорошо развито обоняние. Вода циркулирует через отверстия в голове, которые называются ноздрями . В отличие от людей, ноздри рыб не связаны ни с какими дыхательными путями. Рыбьи ноздри не участвуют в дыхании. Они полностью сенсорные.

Самая большая часть мозга рыбы — обонятельная доля, отвечающая за обоняние.Запах — это реакция нервных окончаний в ноздрях на химические молекулы. Хеморецепция — это научный термин, обозначающий действие нервных клеток, помогающих организму обонять (см. Таблицу 4.13).

Вкусовые рецепторы
Вкус — еще одна форма хеморецепции. Рыба чувствует вкус во рту. Многие рыбы, такие как козел и сом, также имеют мясистые структуры, называемые усач , вокруг подбородка, рта и ноздрей (см. Таблицу 4.13 и Рис. 4.30). У некоторых рыб эти усики используются для осязания и хеморецепции.

Рис. 4.30.

Не все усы имеют хеморецепцию. Усики некоторых рыб, например сомов, не приспособлены для приема химикатов (рис. 4.30 B). У некоторых рыб на голове также есть мясистые выступы, называемые усиками (рис. 4.30 C). Цирри — это не органы чувств.

Таблица 4.13. Форма и функции рыбы: хемосенсорная адаптация и камуфляж

Схема Описание Адаптированная функция
Барбелс Зонд для еды в песке.Может обнаруживать химические вещества по запаху и дегустации (но учтите, что не все усики рыб могут обнаруживать химические вещества — например, усики сома не чувствуют вкуса и запаха)
Трубчатые ноздри Обнаружение химикатов для обоняния и дегустации
Цирри на голову глазами Камуфляж (хотя они напоминают органы чувств химиотерапии, но не реагируют на химические вещества)

Боковая линия
У большинства рыб есть структура, называемая боковой линией, которая проходит по всей длине тела — сразу за головой до хвостового стебля (рис.4.31). Боковая линия используется, чтобы помочь рыбам почувствовать колебания в воде. Вибрации могут исходить от добычи, хищников, других рыб в косяке или от препятствий из окружающей среды.

Рис. 4.31.

Боковая линия на самом деле представляет собой ряд небольших ямок, содержащих особые чувствительные волосковые клетки (рис. 4.32). Эти волосковые клетки движутся в ответ на движение рядом с рыбой. Чувство боковой линии полезно при охоте на добычу, спасении от хищников и обучении.

Рис. 4.32.

Ампулярные рецепторы

Ампулярные рецепторы — это органы чувств, состоящие из пор, заполненных желе, которые обнаруживают электричество. Они могут обнаруживать низкочастотный переменный ток (AC) и постоянный ток (DC). Ампулы обнаруживают электричество, излучаемое добычей, а также небольшие электрические поля, создаваемые собственными движениями рыбы через магнитные поля Земли. Исследователи считают, что это может помочь рыбам использовать магнитное поле Земли для навигации.К рыбам с ампулами относятся акулы, осетровые, двоякодышащие и слоновые рыбы. Ампулы акул известны как Ампулы Лоренцини — по имени Стефано Лоренцини, который впервые описал их в 1678 году (рис. 4.33).

Рис 4.33. ( A ) Ампулы Лоренцини в голове акулы (B) Ампулы Лоренцини поры на морде тигровой акулы

Некоторые рыбы также могут генерировать собственные электрические поля. У этих рыб есть рецепторы как ампулного типа, так и рецепторы клубневидного типа.Клубневые рецепторы наиболее чувствительны к разряду электрических органов самой рыбы, что важно для обнаружения объектов. Рецепторы клубневого типа обычно глубже в коже, чем в ампулах.

Некоторые рыбы, вырабатывающие электричество, также используют его для общения. Электрические рыбы общаются, создавая электрическое поле, которое может обнаружить другая рыба. Например, рыбы-слоны используют электрическую связь для идентификации, предупреждения, подчинения, ухаживания и обучения (рис.4.34).

Рис 4.34. Рыба-слон для общения использует электрические импульсы.

Уши

Звук хорошо распространяется под водой, и для большинства рыб важен слух. У рыб есть два внутренних уха, встроенных в полости черепа. Нижние камеры, саккулус и лагена, улавливают звуковые колебания. (См. Рис. 4.35.)

Каждая ушная камера содержит отолит и выстлана чувствующими волосками. Отолиты — маленькие каменистые кости (см. Рис. 4.36). Они плавают в жидкости, заполняющей ушные раковины. Отолиты слегка касаются чувствительных волосковых клеток, чувствительных к звуку и движению.

Рис. 4.36. (A) Отолит (слуховая кость) американского барреллова (B) Пара отолитов 160-фунтового восьмиполосного морского окуня

Как и отолиты в человеческом ухе, отолиты в рыбах помогают со слухом и равновесием. Когда рыба меняет положение, отолиты наталкиваются на волосковые клетки в ампулах.Ампулы — это выпуклости в полукружных каналах ушей (рис. 4.36). Когда рыба катится вправо или влево, хвостом вверх или вниз, жидкости и отолиты нажимают на волосовидные нервные окончания, выстилающие канал, посылая сообщения в мозг рыбы.

Видео

В этом эпизоде ​​мы на Гуаме изучаем кости в ушах рыб, чтобы определить их возраст. Затем мы изучаем водоросли. Мы проверим образцы, собранные исследователями, и узнаем, почему водоросли так сложно классифицировать.

  1. Рыбные уши и водоросли (промо 30 дюймов)
  2. видео

Видео

В этом эпизоде ​​мы на Гуаме изучаем кости в ушах рыб, чтобы определить их возраст. Затем мы изучаем водоросли. Мы проверим образцы, собранные исследователями, и узнаем, почему водоросли так сложно классифицировать.

  1. Рыбьи уши и водоросли
  2. видео

Некоторые рыбы также используют другие органы для улучшения слуха.Например, газовая камера изменяет громкость в ответ на звуковые волны. Некоторые рыбы могут обнаруживать эти изменения в объеме газового пузыря и использовать их для интерпретации звуков.

Жабры и кислородный обмен

Большинство млекопитающих получают кислород из воздуха, но большинство рыб получают кислород из воды. Чтобы получить кислород из воды, рыба должна пропускать воду через жабры. Жабры состоят из жаберной дуги, жаберных волокон и жаберных тычинок (см. Рис. 4.37). У многих рыб жаберная дуга представляет собой твердую структуру, которая поддерживает жаберные нити.Жаберные нити мягкие, с множеством кровеносных сосудов, поглощающих кислород из воды.

Рис. 4.37. (A) Костистая рыба с открытой крышкой, открывающей жабры (B) Отдельная жабра, удаленная у костистой рыбы (C) Рисунок жабры, показывающий жаберные нити (поглощение кислорода), жаберная дуга ( поддерживающая структура) и жаберные тычинки (гребнеобразная структура для фильтрации).

Когда вода проходит через рот рыбы, через жабры и обратно в окружающую среду, происходит обмен кислорода и углекислого газа.Некоторым рыбам, например тунцам, необходимо постоянно плавать, чтобы получать кислород из воды. Другие рыбы, например губаны, могут пропускать воду через жабры, перекачивая ее. Это позволяет губанам оставаться неподвижными и при этом получать кислород.

Рыбы получают кислород и пищу из воды. Чтобы получить кислород, вода должна двигаться к жабрам. Но чтобы получать энергию из пищи, она должна попасть в желудок рыбы. Жаберные тычинки представляют собой гребенчатые конструкции, которые фильтруют пищу из воды, прежде чем она направится к жабрам.Это удерживает частицы пищи во рту рыбы и позволяет воде вытекать к жабрам.

Строение жаберных тычинок рыбы кое-что указывает на ее рацион. Рыбы, которые поедают мелкую добычу, такую ​​как планктон, обычно имеют множество длинных и тонких жаберных тычинок, которые отфильтровывают очень мелкую добычу из воды, когда она проходит ото рта к жабрам. С другой стороны, у рыб, которые поедают крупную добычу, обычно более широко расставленные жаберные тычинки, потому что им не нужно ловить крошечные частицы.

Operculum — костная пластинка, покрывающая жабры рыб.У химер и костистых рыб крышка покрывает задний конец головы, защищая жаберные отверстия. Костная покрышка часто имеет другой костный лоскут, называемый preoperculum , перекрывающий его (рис. 4.30). У некоторых рыб также есть сильный позвоночник, или шипы, которые выступают назад из предкрышки или крышки. Эти шипы обычно используются для защиты.

У акул и скатов открытые голые жабры (см. Таблицу 4.14), что означает, что они не покрыты крышечкой. Их классификационное название Elasmobranch фактически означает голые жабры.У большинства пластиножаберцев пять жаберных отверстий, за исключением шести жаберных и семи жаберных акул.

Таблица 4.14. Форма и функции рыбы: Жабры

ДИАГРАММА GILL ОПИСАНИЕ АДАПТИРОВАННАЯ ФУНКЦИЯ
Жабры с голыми жабрами Легкий поток воды
Operculum покрывает жабры Защита жабр
Шипы Preoperculum и operculum Броня и защита

Фиг.4.38. (A) Полукруглый скалярий (Pomacanthus semicirculatus) с ярко-синим цветом подсветки на предкрышечной, предкрышечной ости и жаберной крышке (B) Собачий окунь (Neomaenis jocu) с помеченными предкрышечником, жаберной крышкой и жаберной крышкой.

Щечный насос — это то, что рыбы используют для перемещения воды по жабрам, когда они не плавают. Щечный насос состоит из двух частей: рта и крышки. На первом этапе накачки обе крышки закрываются, и рот открывается.Затем вода поступает через рот. Затем рыба закрывает рот и открывает жаберные крышки, чтобы вода перемещалась по жабрам, которые удаляют кислород из воды. Некоторые рыбы также используют буккальный насос как часть своей стратегии кормления, отфильтровывая мелкие организмы, живущие в воде, когда они перекачивают воду (рис. 4.39). По мере прохождения воды жаберные тычинки помогают улавливать планктон из воды.

Рис. 4.39. Некоторые рыбы питаются фильтрацией через щечный насос, например, эта китовая акула, которая питается планктоном

Поры

Пора — это небольшое отверстие в коже.Типичная рыба имеет анальные, генитальные и мочевые поры, расположенные перед анальным плавником. Анальная пора — это место выхода фекалий из тела рыбы. Анус — самая большая и самая передняя из пор (рис. 4.40 A).

Генитальная пора — это место выхода яйцеклеток или сперматозоидов. Пора для мочеиспускания — это место, где моча выходит из организма. Часто половые органы и мочевые поры объединяются в единую мочеполовую пору . Эти поры расположены на небольшом сосочке или бугорке сразу за анальным отверстием (рис.4,40 В).

Большинство рыб размножаются внешним путем, что означает, что сперма и яйца встречаются вне их тела. Однако некоторые рыбы размножаются внутренне. У самок этих рыб часто есть половые органы, приспособленные для внутреннего оплодотворения.

Покрытия корпуса

Одно определение рыбы включает «тело, обычно покрытое чешуей». За исключением некоторых частей головы и плавников, тело многих рыб покрыто накладывающейся друг на друга чешуей (рис.4.41). Весы обычно служат для защиты кожи рыб.

У разных рыб разные типы чешуи. Эти разные типы чешуек сделаны из разных типов тканей (рис. 4.42 и таблица 4.15). Типы шкал также соответствуют эволюционным отношениям (рис. 4.9).

Чешуя плакоида встречается у акул и скатов (рис. 4.42 A). Плакоидная чешуя состоит из уплощенного основания с выступающим к задней части рыбы шипом.Эти чешуйки часто называют дермальными зубчиками, потому что они состоят из дентина и эмали, которые похожи на материал, из которого сделаны зубы.

Чешуя ганоида плоская и не очень сильно накладывается на тело рыбы (рис. 4.42 B). Они водятся на гарах и веслоносах. У осетровых рыб чешуйки ганоидов преобразованы в пластинки тела, называемые щитками.

Чешуя циклоида и ктеноида встречается у подавляющего большинства костистых рыб (рис. 4.42 C и 4.42 D). Эти виды чешуи могут перекрываться, как черепица на крыше, что дает рыбе больше гибкости. Эти чешуйки также образуют годичные кольца, как деревья, которые можно использовать для определения возраста.

Чешуйки ктеноидов отличаются от циклоидных чешуек тем, что они имеют более овальную форму. Ктеноидные чешуи имеют более форму моллюска и имеют шипы по одному краю. Циклоидная чешуя встречается у таких рыб, как угри, золотые рыбки и форель. Ктеноидная чешуя встречается на таких рыбах, как окуни, губаны и рыбы-попугаи.У некоторых камбал, таких как камбала, есть как циклоидная, так и гребневидная чешуя.

Таблица 4.15. Форма и функции рыбы: Особенности весов

Размер чешуи сильно различается у разных видов, и не у всех рыб есть чешуя. У некоторых рыб, например у некоторых скатов, угрей и морских собачек, нет чешуи. Вероятно, это связано с тем, что эти рыбы проводят много времени, терясь о песок или камни. Если бы у них была чешуя, она, скорее всего, стерлась бы.С другой стороны, у некоторых рыб чешуя видоизменена в костные пластинки, как, например, у осетровых рыб и шишек (рис. 4.43 A). У других рыб для защиты чешуя превращается в шипы, как у рыбы-дикобраза (рис. 4.43 B).

Деятельность

Используйте свои навыки наблюдения и расследования, чтобы исследовать различные виды рыбьей чешуи.

Дополнительные модификации

Рыбы очень разнообразны, и есть примеры экстремальных модификаций тела у многих различных групп рыб (см. Таблицу 4.16). Например, у некоторых рыб, таких как удильщик, есть приманки для привлечения добычи. У других, например крылаток, есть ядовитые мешочки, защищающие их от хищников.

Таблица 4.16. Форма и функции рыбы: другие модификации

Схема Описание Адаптированная функция
Воблеры Привлечение добычи
Ядовитые мешочки у основания шипов Защита

Цвет
Окрас рыб очень разнообразен и зависит от того, где обитает рыба.Цвет можно использовать как камуфляж. Цвет также играет роль в поиске партнеров, в рекламных услугах, таких как уборка, в привлечении добычи и в предупреждении других рыб об опасности (см. Таблицу 4.17).

Тунцы, барракуда, акулы и другие рыбы, обитающие в открытом океане, часто имеют серебристый или темно-синий цвет. У этих рыб также есть узор окраски тела, называемый встречным затенением. Противозатенение означает темный цвет на спинной или верхней поверхности и светлый на брюшной или брюшной стороне. Противотеснение помогает замаскировать рыбу за счет соответствия темной глубоководной воде, если смотреть сверху, и соответствия свету, поверхностной воде, если смотреть снизу (рис.4.44 В).

Рис. 4.44. (A) синий серебристый цвет у барракуды Хеллера (B) Затенение у серой рифовой акулы

Ближе к берегу многие рыбы также эволюционировали, чтобы маскироваться в окружающей среде. Морские водоросли развили оба цвета и форму тела, которые помогают им сливаться с водорослями, в которых они живут. Рифовые рыбы часто выглядят как кораллы. Рыбы, которые прячутся в песке, такие как собачьи собачки, плоские рыбы и камбала, часто имеют пятнистый песочный цвет (рис. 4.45 B).

Рис. 4.45. (A) Лиственный морской дракон прячется в водорослях (B) Морская собачка прячется в кораллах (C) Трехточечная камбала прячется в песке

Многие ярко окрашенные рыбы, обитающие в местообитаниях коралловых рифов, также используют свой цвет, полосы и пятна в качестве маскировки (рис. 4.46). Отчасти это связано с тем, что длины волн света и, следовательно, цвет кажутся разными под водой и меняются с глубиной и цветом воды. Вода поглощает свет.Таким образом, количество света уменьшается с увеличением глубины.

Красный цвет, например, очень быстро исчезает с увеличением глубины. Рыбы красного цвета, такие как рыба-солдат (рис. 4.46 A), фактически невидимы ночью и в глубоких водах. С другой стороны, желтый и синий цвета сочетаются с цветом рифа, также обеспечивая маскировку от хищников (рис. 4.46 B). Даже полосы и пятна могут помешать отдельной рыбе выделиться, из-за чего хищнику будет сложнее нанести удар (рис. 4.46 C).

Рис. 4.46. (A) Рыба-солдат (B) сине-желтый гавайский губан-чистильщик (C) косяк осужденного танга и рыба-хирурга с белой полосой

В дополнение к цветам, видимым людям, рыбы также используют ультрафиолетовые (УФ) цвета для маскировки и общения. Некоторые рыбы могут видеть, используя ультрафиолетовый свет, поэтому они используют ультрафиолетовые цвета, чтобы идентифицировать друг друга и избегать хищников. Многие рифовые рыбы также могут мигать своим цветом, чтобы мигать сообщения (рис. 4.47). Клетки кожи, называемые хроматофорами, позволяют рыбам и другим животным быстро менять цвет кожи.

Таблица 4.17

Внутренняя анатомия рыбы и функция систем органов рыб

Живые существа состоят из клеток. Клетки часто становятся специализированными для выполнения определенных функций. Например, мышечные клетки сокращаются, нервные клетки передают импульсы, а клетки желез вырабатывают химические вещества. Ткань — это группа похожих клеток, выполняющих схожую функцию (рис. 4.48). Есть много видов тканей — кости, хрящи, кровь, жир, сухожилия, кожа и чешуя.

Орган — это группа различных видов тканей, работающих вместе для выполнения определенной функции (рис. 4.48). Желудок — это пример органа, состоящего из нескольких типов тканей.
• Мышечная ткань стенки желудка сжимается, чтобы взбивать и перемешивать пищу.
• Железистая ткань внутренней оболочки желудка выделяет пищеварительные химические вещества (ферменты).
• Нервная ткань в стенке желудка координирует перемешивание и переваривание.

Система органов — это группа органов, которые вместе выполняют функцию тела. Например, пищеварительная система состоит из таких органов, как рот, желудок и кишечник (рис. 4.48). Эти органы работают вместе, расщепляя пищу и обеспечивая организм питательными веществами.

Организм — это целое живое существо со всеми его системами органов (рис. 4.48). Такой сложный организм, как рыба, имеет пищеварительную, нервную, сенсорную, репродуктивную и многие другие системы.Рыба состоит из взаимодействующих групп систем органов, которые вместе позволяют рыбе функционировать.

Покровная система

Покровную систему обычно называют кожей. Он состоит из двух слоев: эпидермиса, или внешнего слоя, и дермы, или внутреннего слоя. Под ними находятся мышцы и другие ткани, покрытые кожей (рис. 4.49).

Эпидермис — это верхний слой покровной системы. Он состоит из нескольких листов ячеек, покрывающих чешую.По мере того как клетки стареют, новые клетки, растущие под ними, выталкивают старые клетки к внешней поверхности.

В эпидермисе большинства рыб есть клетки, вырабатывающие слизь, скользкий материал, похожий на жидкий желатин, который помогает рыбе скользить по воде. Слизь стирается ежедневно, унося микроскопические организмы и другие раздражители, которые могут нанести вред рыбе. Запах, характерный для большинства рыб, исходит от химических веществ, содержащихся в слизи.

В эпидермисе рыб есть клетки, содержащие пигментные зерна, придающие рыбе ее цвет.Некоторые рыбы могут менять цвет, увеличивая или уменьшая пигментные клетки. Изменения контролируются гормонами, которые вырабатываются эндокринной системой и регулируются нервной системой.

Нижний слой покровной системы содержит кровеносные сосуды, нервы для восприятия прикосновения и вибрации, а также соединительную ткань, состоящую из прочных волокон. Особый слой кожных клеток выделяет химические вещества для образования чешуи, которая становится больше по мере роста рыбы. У большинства рыб есть покровная чешуя, которая защищает их от повреждений, когда они натыкаются на предметы или подвергаются нападению.По мере увеличения чешуи у некоторых рыб они образуют концентрические кольца. Эти годичные кольца можно использовать для определения возраста рыбы. У некоторых рыб, например у сома, нет чешуи.

Скелетно-мышечная система

Скелетная система поддерживает мягкие ткани и органы рыб (рис. 4.50). Скелет также защищает органы и придает телу рыбы его основную форму. Множество костей черепа образуют жесткую коробку, защищающую мозг. Отверстия, петли и карманы в черепе оставляют место для ноздрей, рта и глаз.

Рис. 4.50. (A) Скелет трески (B) Рисунок скелетной системы рыбы

Позвоночный столб , или позвоночник, не является твердым стержнем. На самом деле позвоночник представляет собой цепочку мелких костей, называемых позвонками. См. Рис. 4.51. В каждом позвонке есть небольшое отверстие. Вместе маленькие отверстия в позвонках образуют канал, через который проходит спинной мозг. Кости позвонков защищают спинной мозг. Пространства между позвонками позволяют позвоночнику изгибаться, а нервам — достигать тканей и органов тела.Реберные кости защищают полость тела. Дополнительные кости поддерживают шипы и лучи.

Рис. 4.51. (A) Фотография позвонков маленькой рыбы. (B) Рисунок позвонков скелета рыбы, вид спереди, на котором показаны участки ребра и хвоста

Мышцы — это ткани, которые сокращаются для сокращения и расслабляются для удлинения. Рыбы двигаются, сокращая и расслабляя мышцы. Как и у людей, у рыб есть три типа мышц: скелетные, гладкие и сердечные.

Мышцы и кости рыбы работают вместе. Скелетные мышцы используют кости как рычаги для перемещения тела. Сухожилия — это крепкие соединительные ткани, которые прикрепляют мышцы к кости. Когда мышечные клетки стимулируются, они сокращаются и укорачиваются, что заставляет сухожилия сдвигать кости.

Скелетные мышцы являются произвольными, то есть они двигаются только тогда, когда мыслящая часть мозга дает им сигнал двигаться. Чтобы плавать, рыба должна сокращать и расслаблять свои скелетные мышцы, как это делают люди, когда учатся ходить.Большая часть тела рыбы состоит из слоев скелетных мышц. Эти слои расположены в виде W-образных полос от живота до спины (рис. 4.52). Эта сеть мышц является вертикальной и взаимосвязанной, что позволяет рыбе перемещать тело вперед и назад плавными волнообразными движениями. Такое движение было бы невозможно, если бы мышцы проходили горизонтально по длине тела, от головы до хвоста.

Рис. 4.52. (A) Вид сбоку скелетных мышц лосося (B) Рисунок рисунка скелетных мышц у рыбы

Рыба плавает, попеременно сокращая мышцы с обеих сторон своего тела (см. Рис.4.53 В). Плавание начинается, когда мышцы на одной стороне тела сокращаются, подтягивая хвостовой плавник к этой стороне. Боковое движение хвостового плавника толкает рыбу вперед. Затем мышцы на противоположной стороне тела сокращаются, и хвостовой плавник перемещается к другой стороне тела.

Рис. 4.53. (A) Сардины плавают, напрягая мышцы хвоста (B) Рисунок, на котором типичное плавание рыбы контрастирует с движением типичного человека, плавающего с ныряющими ластами.

Скелетные мышцы также прикреплены к костям, которые перемещают парные плавники рыбы. Рыбы с широкими грудными плавниками, как губаны, плавают, взмахивая грудными плавниками. Другие рыбы, например, быстро плавающие тунцы, двигаются в основном с помощью хвостового плавника, но для управления им используют длинные тонкие грудные плавники.

Скелетные мышцы также перемещают спинные плавники. Рыбы, которые плавают быстрее, уменьшают сопротивление воды, заправляя спинные плавники во время плавания. Медленнее плавающие рифовые рыбы имеют более крупные спинные плавники, которые они иногда раздувают, чтобы защитить себя при столкновении с другими рыбами.

Гладкие мышцы перемещают внутренние органы тела и трубопроводы, такие как кишечный тракт и кровеносные сосуды. Гладкие мышцы непроизвольны; они движутся без сигналов от думающей части мозга. Например, гладкие мышцы автоматически сокращаются и расслабляются, проталкивая пищу по пищеварительному тракту ото рта к анальному отверстию. Другие гладкие мышцы контролируют поток крови и других жидкостей организма и движение в мочеполовых путях.

Мышцы сердца также непроизвольны.Однако структура клеток сердечной мышцы отличается от непроизвольных гладких мышц, поэтому этим двум типам мышц даны разные названия. Мышцы сердца перекачивают кровь по кровеносным сосудам, ритмично сокращаясь и расслабляясь.

Дыхательная система
Дыхательная система забирает кислород (O2) в организм и выводит из него углекислый газ (CO2). Кислород необходим для пищеварения рыб, поскольку он соединяется с молекулами пищи, высвобождая энергию для нужд рыб.

Органами дыхания рыб являются жабры. Каждая жабра имеет множество жаберных нитей, которые содержат сеть крошечных кровеносных сосудов, называемых капиллярами (рис. 4.54). жаберная крышка (также называемая operculum ) — это поверхность тела, которая покрывает жабры. Жаберные тычинки фильтруют пищу из воды, когда вода попадает в жабры.

Рис. 4.54. (A) Открытые рыбьи жабры, если смотреть с брюшной или брюшной стороны головы (B) Рисунок жаберной нити с жаберными граблями и жаберной дугой, обозначенный

Вода перекачивает жабры в два этапа (рис.4.55). На первом этапе открывается рот, закрываются жабры, и рыба приносит в рот воду. На втором этапе рот закрывается, жабры открываются, и вода выходит из рыбы. Это действие называется буккальным насосом и названо в честь мышц щек, которые втягивают воду в рот и через жабры.

Некоторые рыбы также используют таранную вентиляцию для перемещения воды по жабрам. При быстром плавании такие рыбы, как акулы и тунцы, открывают рты и жабры, позволяя воде непрерывно проходить через жабры.Им не нужно открывать и закрывать рот, потому что при плавании вода выталкивается через их жабры.

Когда вода проходит через жабры, углекислый газ из крови попадает в воду через капилляры жаберных нитей. Те же жаберные нити позволяют растворенному в воде кислороду проходить в кровь, которая затем разносит его по всему телу.

Рис. 4.55. Движение воды мимо жабр

Плавучесть

Плавучесть означает, будет ли что-то плавать или тонуть.У некоторых рыб есть газовый пузырь, который помогает контролировать их плавучесть. Газовая камера — это специальная, заполненная газом камера в полости тела рыбы. Он находится чуть ниже почек.

Газовый пузырь часто называют плавательным пузырем, потому что он регулирует плавучесть, делая плотность рыбы равной плотности окружающей воды. Средняя плотность морской воды составляет 1,026 г / мл, а плотность мяса и костей рыб составляет около 1,076 г / мл. Это означает, что типичная рыба плотнее морской воды и, естественно, тонет.С другой стороны, плотность газового пузыря меньше плотности морской воды. Низкая плотность газового пузыря помогает рыбе плавать (рис. 4.56).

Рис 4.56. (A) Положение газового пузыря (плавательного пузыря) в уклейке (Alburnoides bipunctatus) (B) Газовый пузырь красноватой рыбы (Scardinius erythrophthalmus)

Газовая камера имеет низкую плотность, поскольку она заполнена в основном кислородом и азотом. Газовый пузырь внутри рыбы действует как надувной воздушный шар.Газовая камера снижает плотность тела рыбы до тех пор, пока она не станет такой же, как плотность морской воды. Это помогает рыбе плавать в толще воды.

У многих групп рыб (например, сельди, щуки, сома, угря) открытая трубка соединяет газовый пузырь с пищеварительным трактом. Это позволяет рыбе регулировать содержание газа в мочевом пузыре, глотая и выдыхая воздух через рот. У других видов рыб (например, окуня, окуня, групера) есть газовая железа, которая пузырями попадает в кровоток и выходит из него, чтобы надуть и сдуть газовый пузырь.

Давление увеличивается с увеличением глубины воды, потому что вода наверху давит на воду (и животных) внизу. Когда рыба заплывает в более глубокую воду, ее газовый пузырь становится меньше из-за увеличения давления воды. Таким образом, когда рыба идет глубже, она должна добавлять газ в свой газовый пузырь, чтобы поддерживать нейтральную плавучесть. Когда рыба плывет на мелководье, ее газовый пузырь расширяется, потому что давление воды, окружающей рыбу, уменьшается. Таким образом, по мере продвижения на мелководье рыба должна поглощать газ из газового пузыря, чтобы поддерживать нейтральную плавучесть.

Поскольку газы медленно входят и выходят из газового пузыря, рыба, пойманная на большой глубине, часто раздувается, когда ее быстро выводят на поверхность. Газ в газовой камере расширяется, когда рыба перемещается от высокого давления на глубине к более низкому давлению у поверхности. Рыба, быстро вытащенная на поверхность, не может достаточно быстро поглощать газы, и внезапное расширение газового пузыря может травмировать рыбу (рис. 4.57).

Чтобы рыба оставалась живой, сборщики должны медленно поднимать рыбу на поверхность, чтобы тело рыбы могло поглотить газы из газового пузыря.Существуют также методы выпуска рыбы с помощью рекомпрессии, чтобы помочь ей восстановиться после расширения газа в результате быстрого выхода на поверхность (рис. 4.58).

Некоторые рыбы, такие как пехотинцы и жабы, могут издавать звук с помощью своего газового пузыря. Мышцы стенки мочевого пузыря быстро сокращаются, производя низкочастотный (низкий) звук, который резонирует и усиливается в мочевом пузыре. Другие рыбы, такие как двоякодышащие, также используют газовый пузырь как дополнительный орган дыхания или «легкое», когда ползают по суше.

Рыбы, у которых нет газового пузыря, всегда плотнее окружающей воды, поэтому они тонут, если перестают плавать. Например, акулы должны продолжать плавать, чтобы оставаться на плаву. Они используют свои хвосты и грудные плавники как крылья самолета, регулируя подъемную силу, чтобы контролировать глубину своего плавания. У многих донных рыб также нет газовых пузырей, потому что они не нуждаются в них.

Система кровообращения

Кровеносная система — это система транспортировки жидкостей организма.Система кровообращения доставляет питательные вещества к клеткам и уносит отходы от клеток. Кровь — это жидкость, состоящая из плазмы (жидкой части) и клеток крови. Плазма содержит воду, углекислый газ (CO2), гормоны, питательные вещества, отходы и другие молекулы. Клетки крови бывают двух основных типов: красные и белые.

Красные кровяные тельца переносят кислород (O2) от жабр к другим клеткам тела. В эритроцитах особые молекулы, которые химически соединяются с кислородом, могут улавливать и выделять кислород в зависимости от окружающей среды.Эти молекулы, называемые гемоглобином, содержат атомы железа. Когда гемоглобин соединяется с кислородом, он становится ярко-красным. Когда гемоглобин выделяет свой кислород, он становится очень темно-красным.

Лейкоциты борются с болезнями. Они часто концентрируются вокруг инфицированных ран, убивая бактерии и унося отходы от раны. Мертвые клетки в ране образуют гной, от которого помогают избавиться лейкоциты.

Сеть трубок, называемых артериями , , , капиллярами, и венами , соединяет сердце со всеми частями тела (рис.4.59). Артерии переносят кровь от сердца к капиллярам. Капилляры микроскопических размеров и очень многочисленные, имеют тонкие стенки, через которые могут перемещаться молекулы питательных веществ. Молекулы перемещаются через стенки капилляров в жидкости, окружающие ткани. Вены несут кровь из капилляров обратно к сердцу.

Сердце перекачивает кровь ко всем частям тела. Сердце рыбы имеет один желудочек и одно предсердие. Для сравнения, сердце человека состоит из двух отдельных желудочков и двух отдельных предсердий.В сердце рыбы есть еще две камеры: венозный синус (перед желудочком) и артериальная луковица (после предсердия). (См. Рис. 4.60.)

Когда сердечная мышца сокращается, она заставляет кровь поступать в артерии. Клапаны между камерами позволяют крови течь только в одном направлении. Кровь с низким содержанием кислорода и высоким содержанием углекислого газа перекачивается к жабрам, где она выделяет углекислый газ и забирает больше кислорода через капилляры в жаберных нитях.Кровь, теперь богатая кислородом, течет по разветвляющимся артериям в мозг, пищеварительную систему и другие ткани и органы.

Проходя через пищеварительную систему, кровь поглощает питательные вещества и распределяет их по телу. Проходя через каждую ткань и орган, часть плазмы крови проходит через капилляры и обтекает клетки. Молекулы кислорода и питательных веществ перемещаются из плазмы в клетки. Углекислый газ и продукты жизнедеятельности перемещаются из клеток в плазму.Затем плазма возвращается в капилляры и уносит отходы.

Другая сеть трубок, называемая лимфатическими протоками , собирает жидкость, которая выходит из капилляров и собирается в частях тела рыбы. Лимфатические протоки возвращают эту жидкость (называемую лимфой ) в вены.

Пищеварительная и выделительная система

Пищеварительная и выделительная система рыбы включает в себя структуры и органы, которые доставляют пищу в организм, расщепляют пищу на полезные для организма вещества и удаляют неиспользованную пищу.Пищеварительная система начинается с рта и зубов, которые улавливают пищу и отправляют ее в желудок и кишечник для переваривания. Непереваренная пища и отходы покидают тело через задний проход (рис. 4.61).

Мочевая часть выделительной системы также удаляет отходы, производимые организмом. Его главными органами являются почек , которые представляют собой пару длинных темно-красных органов под позвонками. Почки фильтруют мелкие молекулы из крови. После фильтрации полезные вещества, такие как сахар, соли и вода, снова всасываются в кровь.Оставшиеся продукты жизнедеятельности проходят из почек по мочевым трубкам , в мочевой пузырь и выводятся через отверстие за анусом, которое называется урогенитальным отверстием . Это то же самое отверстие, через которое проходят материалы репродуктивной системы (яйцеклетки из яичников или сперма из яичек).

Жабры также являются частью выделительной системы. Кровь переносит продукты жизнедеятельности и избыток солей в жаберные нити. Двуокись углерода (CO2) и аммиак выводятся через жабры.Рыбы, обитающие в морской и солоноватой воде, также выделяют излишки соли из своих жабр.

Печень также удаляет шлаки из крови. Печень очищает кровь после того, как она собрала продукты переваривания из кишечника. Отходы превращаются в желчь и хранятся в желчном пузыре, где они ждут, чтобы снова попасть в пищеварительный тракт, чтобы помочь пищеварению (рис. 4.61).

Осмос — это пассивное движение воды через клеточные мембраны. Если две жидкости имеют разную соленость, вода будет проходить через клеточную мембрану, чтобы сбалансировать соленость с обеих сторон.Это означает, что на выделительную систему влияет то, где живет рыба.

Пресноводные рыбы имеют ткани тела, более соленые, чем окружающая вода. Таким образом, вода постоянно поступает в организм через жабры и полости тела. Пресноводным рыбам необходимо часто мочиться, чтобы избавиться от лишней воды.

Морские рыбы, напротив, окружены водой, более соленой, чем их физиологические жидкости. Вода всегда уходит из их тел. Чтобы предотвратить обезвоживание, морские рыбы постоянно пьют и выделяют небольшое количество очень концентрированной мочи.Специальные солевые железы в жабрах также помогают выводить соль из воды, которую выпила рыба.

Деятельность

Используйте свои знания об анатомии рыб, чтобы описать и нарисовать рыбу, используя правильную терминологию.

Онлайн-формат данной учебной программы позволяет нам постоянно добавлять содержание и мероприятия. Вы достигли раздела «Изучение нашей текучей Земли», который все еще находится в стадии разработки. Продолжайте посещать для новых дополнений!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *